608 research outputs found

    Evolution of Nanoporosity in Dealloying

    Get PDF
    Dealloying is a common corrosion process during which an alloy is "parted" by the selective dissolution of the electrochemically more active elements. This process results in the formation of a nanoporous sponge composed almost entirely of the more noble alloy constituents . Even though this morphology evolution problem has attracted considerable attention, the physics responsible for porosity evolution have remained a mystery . Here we show by experiment, lattice computer simulation, and a continuum model, that nanoporosity is due to an intrinsic dynamical pattern formation process - pores form because the more noble atoms are chemically driven to aggregate into two-dimensional clusters via a spinodal decomposition process at the solid-electrolyte interface. At the same time, the surface area continuously increases due to etching. Together, these processes evolve a characteristic length scale predicted by our continuum model. The applications potential of nanoporous metals is enormous. For instance, the high surface area of nanoporous gold made by dealloying Ag-Au can be chemically tailored, making it suitable for sensor applications, particularly in biomaterials contexts.Comment: 13 pages, PDF, incl. 4 figures. avi movies of simulations available at http://www.deas.harvard.edu/matsci/downdata/downdata.htm

    Dealloying of Platinum-Aluminum Thin Films Part II. Electrode Performance

    Full text link
    Highly porous Pt/Al thin film electrodes on yttria stabilized zirconia electrolytes were prepared by dealloying of co-sputtered Pt/Al films. The oxygen reduction capability of the resulting electrodes was analyzed in a solid oxide fuel cell setup at elevated temperatures. During initial heating to 523 K exceptionally high performances compared to conventional Pt thin film electrodes were measured. This results from the high internal surface area and large three phase boundary length obtained by the dealloying process. Exposure to elevated temperatures of 673 K or 873 K gave rise to degradation of the electrode performance, which was primarily attributed to the oxidation of remaining Al in the thin films.Comment: 5 pages, 4 figure

    Dealloying of Platinum-Aluminum Thin Films Part I. Dynamics of Pattern Formation

    Full text link
    Applying focused ion beam (FIB) nanotomography and Rutherford backscattering spectroscopy (RBS) to dealloyed platinum-aluminum thin films an in-depth analysis of the dominating physical mechanisms of porosity formation during the dealloying process is performed. The dynamical porosity formation due to the dissolution of the less noble aluminum in the alloy is treated as result of a reaction-diffusion system. The RBS analysis yields that the porosity formation is mainly caused by a linearly propagating diffusion front, i.e. the liquid/solid interface, with a uniform speed of 42(3) nm/s when using a 4M aqueous NaOH solution at room temperature. The experimentally observed front evolution is captured by the normal diffusive Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) equation and can be interpreted as a branching random walk phenomenon. The etching front produces a gradual porosity with an enhanced porosity in the surface-near regions of the thin film due to prolonged exposure of the alloy to the alkaline solution.Comment: 4 pages, 5 figure

    Numerical studies towards practical large-eddy simulation

    Get PDF
    Large-eddy simulation developments and validations are presented for an improved simulation of turbulent internal flows. Numerical methods are proposed according to two competing criteria: numerical qualities (precision and spectral characteristics), and adaptability to complex configurations. First, methods are tested on academic test-cases, in order to abridge with fundamental studies. Consistent results are obtained using adaptable finite volume method, with higher order advection fluxes, implicit grid filtering and "low-cost" shear-improved Smagorinsky model. This analysis particularly focuses on mean flow, fluctuations, two-point correlations and spectra. Moreover, it is shown that exponential averaging is a promising tool for LES implementation in complex geometry with deterministic unsteadiness. Finally, adaptability of the method is demonstrated by application to a configuration representative of blade-tip clearance flow in a turbomachine

    A high-throughput technique for determining grain boundary character non-destructively in microstructures with through-thickness grains

    Get PDF
    Grain boundaries (GBs) govern many properties of polycrystalline materials. However, because of their structural variability, our knowledge of GB constitutive relations is still very limited. We present a novel method to characterise the complete crystallography of individual GBs non-destructively, with high-throughput, and using commercially available tools. This method combines electron diffraction, optical reflectance and numerical image analysis to determine all five crystallographic parameters of numerous GBs in samples with through-thickness grains. We demonstrate the technique by measuring the crystallographic character of about 1,000 individual GBs in aluminum in a single run. Our method enables cost- and time-effective assembly of crystallography–property databases for thousands of individual GBs. Such databases are essential for identifying GB constitutive relations and for predicting GB-related behaviours of polycrystalline solids.United States. Department of Energy. Office of Basic Energy Sciences (award no DE-SC0008926)MIT International Science and Technology InitiativesNational Science Foundation (U.S.) (grant DMR-1003901

    the fire assay reloaded

    Get PDF
    The fire assay process is still the most accurate and precise method for measuring the gold content in gold alloys. Scanning electron microscopy and transmission electron microscopy have been applied to observe the change in microstructure of the samples undergoing the fire assay process. The performed observations reveal that the microstructure of the specimen is more complex than expected. Before the parting stage, the specimen is not a perfect gold–silver binary alloy but contains also copper–silver oxides and other residual compounds. The parting stage appears to be a dealloying process leading to a nanoporous gold nanostructure. What observed after partition explains the evolution of the shape and colour of the specimen and may allow for a better comprehension of the procedure and an improvement in the method

    Porous silicon formation and electropolishing

    Full text link
    Electrochemical etching of silicon in hydrofluoride containing electrolytes leads to pore formation for low and to electropolishing for high applied current. The transition between pore formation and polishing is accompanied by a change of the valence of the electrochemical dissolution reaction. The local etching rate at the interface between the semiconductor and the electrolyte is determined by the local current density. We model the transport of reactants and reaction products and thus the current density in both, the semiconductor and the electrolyte. Basic features of the chemical reaction at the interface are summarized in law of mass action type boundary conditions for the transport equations at the interface. We investigate the linear stability of a planar and flat interface. Upon increasing the current density the stability flips either through a change of the valence of the dissolution reaction or by a nonlinear boundary conditions at the interface.Comment: 18 pages, 8 figure

    A Comparative Plasmonic Study of Nanoporous and Evaporated Gold Films

    Get PDF
    Previously, we have reported that nanoporous gold (NPG) films prepared by a chemical dealloying method have distinctive plasmonic properties, i.e., they can simultaneously support localized and propagating surface plasmon resonance modes (l-SPR and p-SPR, respectively). In this study, the plasmonic properties of NPG are quantified through direct comparison with thermally evaporated gold (EG) films. Cyclic voltammetry and electrochemical impedance spectroscopy experiments reveal that the NPG films have 4–8.5 times more accessible surface area than EG films. Assemblies of streptavidin–latex beads generate p-SPR responses on both NPG and EG films that correlate well with the bead density obtained from scanning electron microscopy (SEM) images. A layer-by-layer assembly experiment on NPG involving biotinylated anti-avidin IgG and avidin, studied by l-SPR and SEM, shows that the l-SPR signal is directly linked to the accessibility of the interior of the NPG porosity, an adjustable experimental parameter that can be set by the dealloying condition and time

    One and Two-Dimensional Pattern Formation on Ion Sputtered Silicon

    Get PDF
    ABSTRACT The evolution of surface morphology during ion beam erosion of Si(111) at glancing ion incidence (60 o from normal, 500 eV Ar + , 0.75 mA/cm 2 collimated beam current) was studied over a temperature range of 500-730 o Celsius. Keeping ion flux, incident angle, and energy fixed, it was found that one-dimensional sputter ripples with wavevector oriented perpendicular to the projected ion beam direction form during sputtering at the lower end of the temperature range. For temperatures above approximately 690 o Celsius, growth modes both parallel and perpendicular to the projected ion beam direction contribute to the surface morphological evolution. This effect leads to the formation of bumps ("dots") with nearly rectangular symmetry

    Decay of one dimensional surface modulations

    Full text link
    The relaxation process of one dimensional surface modulations is re-examined. Surface evolution is described in terms of a standard step flow model. Numerical evidence that the surface slope, D(x,t), obeys the scaling ansatz D(x,t)=alpha(t)F(x) is provided. We use the scaling ansatz to transform the discrete step model into a continuum model for surface dynamics. The model consists of differential equations for the functions alpha(t) and F(x). The solutions of these equations agree with simulation results of the discrete step model. We identify two types of possible scaling solutions. Solutions of the first type have facets at the extremum points, while in solutions of the second type the facets are replaced by cusps. Interactions between steps of opposite signs determine whether a system is of the first or second type. Finally, we relate our model to an actual experiment and find good agreement between a measured AFM snapshot and a solution of our continuum model.Comment: 18 pages, 6 figures in 9 eps file
    • …
    corecore