Dealloying is a common corrosion process during which an alloy is "parted" by
the selective dissolution of the electrochemically more active elements. This
process results in the formation of a nanoporous sponge composed almost
entirely of the more noble alloy constituents . Even though this morphology
evolution problem has attracted considerable attention, the physics responsible
for porosity evolution have remained a mystery . Here we show by experiment,
lattice computer simulation, and a continuum model, that nanoporosity is due to
an intrinsic dynamical pattern formation process - pores form because the more
noble atoms are chemically driven to aggregate into two-dimensional clusters
via a spinodal decomposition process at the solid-electrolyte interface. At the
same time, the surface area continuously increases due to etching. Together,
these processes evolve a characteristic length scale predicted by our continuum
model. The applications potential of nanoporous metals is enormous. For
instance, the high surface area of nanoporous gold made by dealloying Ag-Au can
be chemically tailored, making it suitable for sensor applications,
particularly in biomaterials contexts.Comment: 13 pages, PDF, incl. 4 figures. avi movies of simulations available
at http://www.deas.harvard.edu/matsci/downdata/downdata.htm