1,189 research outputs found

    Unsteady flow through compressor stages

    Get PDF
    The application of the nonsteady Lax-Wendroff technique to problems with asymptotically periodic solution which offers a potentially powerful method for the investigation of the interaction of rotating and stationary blade rows in turbomachinery is reported. A technique for specifying boundary conditions with phase lag was developed to accomplish this. A complete nonlinear analysis is carried out numerically to determine the entire flow field without recourse to the assumption of small disturbances of linear equations which underlie the previous acoustic theories. The result, obtained for the case of equal number of rotor and stator blades shows that transonic flow can be handled without difficulty. In addition, the program is not limited with regard to blade thickness, camber or loading. Extension of this method to incorporate viscous wakes and to analysis of fully three dimensional configuration is feasible, and would greatly expand its utility in practical applications

    Computation of unsteady transonic flows through rotating and stationary cascades. 1: Method of analysis

    Get PDF
    A numerical method of solution of the inviscid, compressible, two-dimensional unsteady flow on a blade-to-blade stream surface through a stage (rotor and stator) or a single blade row of an axial flow compressor or fan is described. A cyclic procedure has been developed for representation of adjacent blade-to-blade passages which asymptotically achieves the correct phase between all passages of a stage. A shock-capturing finite difference method is employed in the interior of the passage, and a method of characteristics technique is used at the boundaries. The blade slipstreams form two of the passage boundaries and are treated as moving contact surfaces capable of supporting jumps in entropy and tangential velocity. The Kutta condition is imposed by requiring the slipstreams to originate at the trailing edges, which are assumed to be sharp. Results are presented for several transonic fan rotors and compared with available experimental data, consisting of holographic observations of shock structure and pressure contour maps. A subcritical stator solution is also compared with results from a relaxation method. Finally, a periodic solution for a stage consisting of 44 rotor blades and 46 stator blades is discussed

    Existence of the D0-D4 Bound State: a detailed Proof

    Full text link
    We consider the supersymmetric quantum mechanical system which is obtained by dimensionally reducing d=6, N=1 supersymmetric gauge theory with gauge group U(1) and a single charged hypermultiplet. Using the deformation method and ideas introduced by Porrati and Rozenberg, we present a detailed proof of the existence of a normalizable ground state for this system

    Twenty-two-year cycle of the upper limiting rigidity of Daly waves

    Get PDF
    The method of calculating energy losses along regular particle trajectories is applied to obtain the predicted cosmic ray anisotropies from 200 to 500 GV. The tilt angle of the interplanetary neutral sheet varies to simulate a 22-year cycle magnetic cycle. The calculated values of solar diurnal and semidiurnal, and sidereal diurnal intensity waves are compared with observations

    Computation of unsteady transonic flows through rotating and stationary cascades. 3: Acoustic far-field analysis

    Get PDF
    A small perturbation type analysis has been developed for the acoustic far field in an infinite duct extending upstream and downstream of an axial turbomachinery stage. The analysis is designed to interface with a numerical solution of the near field of the blade rows and, thereby, to provide the necessary closure condition to complete the statement of infinite duct boundary conditions for the subject problem. The present analysis differs from conventional inlet duct analyses in that a simple harmonic time dependence was not assumed, since a transient signal is generated by the numerical near-field solution and periodicity is attained only asymptotically. A description of the computer code developed to carry out the necessary convolutions numerically is included, as well as the results of a sample application using an impulsively initiated harmonic signal

    Recommendation Subgraphs for Web Discovery

    Full text link
    Recommendations are central to the utility of many websites including YouTube, Quora as well as popular e-commerce stores. Such sites typically contain a set of recommendations on every product page that enables visitors to easily navigate the website. Choosing an appropriate set of recommendations at each page is one of the key features of backend engines that have been deployed at several e-commerce sites. Specifically at BloomReach, an engine consisting of several independent components analyzes and optimizes its clients' websites. This paper focuses on the structure optimizer component which improves the website navigation experience that enables the discovery of novel content. We begin by formalizing the concept of recommendations used for discovery. We formulate this as a natural graph optimization problem which in its simplest case, reduces to a bipartite matching problem. In practice, solving these matching problems requires superlinear time and is not scalable. Also, implementing simple algorithms is critical in practice because they are significantly easier to maintain in production. This motivated us to analyze three methods for solving the problem in increasing order of sophistication: a sampling algorithm, a greedy algorithm and a more involved partitioning based algorithm. We first theoretically analyze the performance of these three methods on random graph models characterizing when each method will yield a solution of sufficient quality and the parameter ranges when more sophistication is needed. We complement this by providing an empirical analysis of these algorithms on simulated and real-world production data. Our results confirm that it is not always necessary to implement complicated algorithms in the real-world and that very good practical results can be obtained by using heuristics that are backed by the confidence of concrete theoretical guarantees

    Time-dependent transonic flow solutions for axial turbomachinery

    Get PDF
    Three-dimensional unsteady transonic flow through an axial turbomachine stage is described in terms of a pair of two-dimensional formulations pertaining to orthogonal surfaces, namely, a blade-to-blade surface and a hub-to-casing surface. The resulting systems of nonlinear, inviscid, compressible equations of motion are solved by an explicit finite-difference technique. The blade-to-blade program includes the periodic interaction between rotor and stator blade rows. Treatment of the boundary conditions and of the blade slipstream motion by a characteristic type procedure is discussed in detail. Harmonic analysis of the acoustic far field produced by the blade row interaction, including an arbitrary initial transient, is outlined. Results from the blade-to-blade program are compared with experimental measurements of the rotating pressure field at the tip of a high-speed fan. The hub-to-casing program determines circumferentially averaged flow properties on a meridional plane. Blade row interactions are neglected in this formulation, but the force distributions over the entire blade surface for both the rotor and stator are obtained. Results from the hub-to-casing program are compared with a relaxation method solution for a subsonic rotor. Results are also presented for a quiet fan stage which includes transonic flow in both the rotor and stator and a normal shock in the stator

    Zooming in on local level statistics by supersymmetric extension of free probability

    Full text link
    We consider unitary ensembles of Hermitian NxN matrices H with a confining potential NV where V is analytic and uniformly convex. From work by Zinn-Justin, Collins, and Guionnet and Maida it is known that the large-N limit of the characteristic function for a finite-rank Fourier variable K is determined by the Voiculescu R-transform, a key object in free probability theory. Going beyond these results, we argue that the same holds true when the finite-rank operator K has the form that is required by the Wegner-Efetov supersymmetry method of integration over commuting and anti-commuting variables. This insight leads to a potent new technique for the study of local statistics, e.g., level correlations. We illustrate the new technique by demonstrating universality in a random matrix model of stochastic scattering.Comment: 38 pages, 3 figures, published version, minor changes in Section

    The Geometric Phase and Gravitational Precession of D-Branes

    Full text link
    We study Berry's phase in the D0-D4-brane system. When a D0-brane moves in the background of D4-branes, the first excited states undergo a holonomy described by a non-Abelian Berry connection. At weak coupling this is an SU(2) connection over R^5, known as the Yang monopole. At strong coupling, the holonomy is recast as the classical gravitational precession of a spinning particle. The Berry connection is the spin connection of the near-horizon limit of the D4-branes, which is a continuous deformation of the Yang and anti-Yang monopole.Comment: 23 pages; v3: typos correcte

    A Novel Approach to Predicting 3RM Using Velocity-Based Measurement

    Get PDF
    [Purpose] The purpose of this study was to identify the minimum mean concentric velocity necessary for the successful completion of repetitions in the back squat and bench press. [Subjects] Participants were 7 Division 1 Track and Field throwers, 5 females and 2 males, and performed 3RM testing at 90% of their 1RM in both the back squat and bench press, for which the mean concentric velocity of the bar was recorded. [Results] A strong negative correlation (r = -0.99) was determined between mean concentric velocity in the back squat and %1RM and a similarly strong negative correlation (r = -0.97) was determined between mean concentric velocity in the bench press and %1RM. Additionally, the lowest mean concentric velocity for repetitions in the back squat was 0.25 m/s and the lowest mean concentric velocity for repetitions in the bench press was 0.12 m/s. [Conclusion] To potentially reduce the risk of injury and fatigue leading to overtraining, the strength and conditioning professional should be aware of the respective velocities necessary for the successful completion of repetitions in the back squat and bench press so as to avoid taking an athlete to absolute failure
    corecore