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I . INTRODUCTION

Page 1

The introduction of large bypass-ratio turbofan engine de-

signs has significantly reduced jet exhaust noise (which is

primarily related to mixing of the exhaust stream with the

surrounding atmosphere) and thereby focussed attention on the

fan and compressor as predominant contributors to the acoustic

signature of turbofan engines during aircraft landing approach!.

The use of inlet noise suppression devices holds promise for

attenuating the acoustic output of large fans (cf., Reference

2). It is, however, evident that optimization of the trade-

offs between performance and acoustic output in the preliminary

design of advanced engines is dependent upon more complete

understanding of the aerodynamic sources of the acoustic sig-

nals and the factors affecting their propagation through the

gaseous stream inje~ted by the engine. In point of fact, per-
. 3

formance requirements tend to drive fan designs toward very

small hub to tip ratios, transonic or supersonic tip speeds,

and high blade loading, all of which are in direct contradiction

to the assumptions underlying most previous analyses of non­

steady aerodynamics of rotors and rotor-stator interactions (cf.

References 4-8).

The present research has resulted in a powerful method of anal­

ysis of non-steady flow fields associated with rotor-stator
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interaction. This method, which is capable of treating heavily

loaded blades operating at transonic and supersonic speeds, in­

cluding generation of imbedded shock waves, involves numerical

solution of the complete, nonlinear partial differential equa­

tions governing the flow. The generation and propagation of

finite amplitude, nonlinear acoustic waves is therefore an in­

herent part of the flow field solutions thereby obtained.

Furthermore, the technique developed is also applicable to

analysis of rotor performance in spatially distorted inlet

flows and the related acoustic response.
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A. Description' of the problem. Turbo-machinery offers

a host of aerodynamic sources of non-steady flows; the frequen­

cies at which the resulting flow patterns are emitted encompass

the acoustic range giving rise to a noise pattern that is char­

acteristic of the particular design and operating conditions.

The sources of acoustic signals range from turbulent fluctua­

tions in the boundary layers and exhaust stream to the inter­

action of adjacent rotating and stationary blade rows in the

compressor and turbine. The present study has been specifical­

ly devoted to rotor-stator blade row interactions in a fan or

compressor.

Alth~ugh the flow about a rotor is steady in a rotating frame

of reference. it presents a periodic field in a fixed (station­

ary) reference frame. This fact has been exploited in the anal­

ysis of noise generation by an isolated rotor 6 • and underlies

the classical rotor-stator interaction theory of Kemp and Sears?

H6wever. th~ previous analyses (References 4-8) consistently

em~loy the assumption of small disturbances in some sense to per­

mit use of a linear governing equation. In the case of incom­

pressible flow about thin. lightly loaded blades the physical

justification of the assumption is clear; however as the blade

loading is increased and tip speeds become transonic or super­

sonic. due to the performance requirements of advanced engines.
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the utility of solutions of the linearized. problem becomes

less evident. Finally, the occurrence of shock waves clearly

inv~lidates the assumpt(~n of continuous, isentropic flow in-

herent in the previous work.

In the case of supersonic tip speeds a vivid description of

the nature of the radiated acoustic energy can be made by

noting that it is analogous to a continuous train of sonic

booms being emitted by the rotating fan blades. This analogy

also proves useful in describing the mechanism by which the

radiated energy decays in distance (or time) due to destruc-

tive interference b~tween the successive waves. It is, how-

ever, a clearly nonlinear phenomenon in so far as the waves

have finite amplitude (e.g., as long as they must be identified
,': .

as shock waves rather than acoustic waves).

Although the use of models based on linear equations does offer

certain appeal, such as the ability to superimpose solutions

and thereby separate the contributions of blade camber and

thickness, for example 5 ,6,7, they do not appear adequate under

conditions characteristic of advanced fan and/or compressor

designs. Therefore, a finite-difference technique generally

attributed to Lax and Wend~off 9 was employed in the present

study to develop a method of solution of the complete non-

linear partial differential equations and boundary conditions
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governing the inviscid flow through adjacent rotating and sta­

tionary blade rows. The mechanism of generation and propaga­

tion of acoustic signals· is therefore an inherent aspect of

the numerical solution. The additional consideration of

boundary layer and viscous wakes, for example, will allow the

salient effects of viscous and inviscid nonuniformities to be

individually identified through numerical studies with impor­

tant implications relative to scaling o'f acoustic tests and

full-scale fan/compressor design.

Description of flow field generated by a rotor-stator combina­

tion having an unequal number of blades, or that generated by

an isolated rotor operating in a circumferentially distorted

inlet flow, in general requires consideration of the entire

flow annulus. In certain cases having particular symmetric

features it is possible to consider only a fraction of'the

annulus. Only in the limiting case of undistorted inlet flow

and equal blading can the solution of a single blade-to-blade

passage at any particular instant be applied to description of

the entire annulus at the same instant. However, in the pre­

sent study it is shown that by developing the appropriate

phase relationships a solution for the entire annulus can be

constructed by consideration of all combinations of rotor­

stator configurations occurring in a single blade-to-blade

passage during a fraction of a complete rotation of the fan

,or compressor wheel. A unique method for applying sequentially
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the boundary conditions on the blade-to-blade passage in

accordance with the phase relationships is developed. The

technique not only economizes the computer requirements of

the two dimensional (viz., on a cylindrical surface through

the fan or compressor) solutions obtained in the present

study" but also renders the extension to three dimensional

(viz., in a sector of the annulus) problems tractable from
I

the viewpoint of computer storage and ti~e requirements.

B. Governing eguations and finite-difference solu­

tion. The inviscid, compressible flow through the fan or

compressor is governed by the standard conservation laws for

mass and energy, and the non-steady form of the Euler equa-

tions. Mathematically, the set forms a hyperbolic system of

four partial differential equations that can be solved as an

initial value problem. The explicit finite-difference tech­

nique generally attributed to Lax and Wandroff 9 offers an

algorithm for numerical solution of the system of equations

that is more easily implemented than the three dimensional

method of characteristics, has second order accuracy in space

and time, and can describe imbedded shocks (subject to the

influence of an appropriate IInumerical viscosityll). The de-

tails of the particular version of the method employed is

described in Reference (10).

Implementation of the finite-difference algorithm and the
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boundary point routines is facilitated by transforming the

regions to be considered, shown in Figure (la), into a

series of square domains shown in Figure (lb), that span the

blade-to~blade passages from surface to surface and from

leading to trailing edge, and extend in the present study,

far upstream and downstream of the two blade rows. The re-

sulting system of equations after transformation and suitable

non-dimensionalization (i.e., with respect to the free stream

speed of sound and pressure) can be expressed as:

Continuity:

~~ + A ~a (pu) + B ~v (pv) + 01 = 0

Energy:

~ a aaT + A aa (puH) + B av (pvH) +D 2 = 0

a-Momentum:

v-Momentum:

ill a ( a 2aT + A acr puv) + B av (pv +p) + 04 = 0

(1)

( 2 )

( 3 )

(4 )
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where T is the non-dimensional time, u and v are the velocity

components in the Cartesian system, p is the density, p is the

pressure, H is the totaL enthalpy and E is the total energy

(i .e., E=H-p/p).

The values of A, B, and D1 through D4 in the various domains

are given below:

where

Domain
Coefficient

A

B

CO'. = Cs/C r
Ca = Cs/S s
Cy = Cs/S r

Co = Cs /C 4

1 2

1

3

1

4 5 6

C
0'.

7

(1-0) C
0'.

C and S refer to blade chord and pitch respectively, while sub-
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scripts sand r denote ~tator and rotor. C4 is the inter­

blade row gap. In addition Yv refers to the peripheral span

of the blade-to-blade passage, i.e., Yv = Yu - y~. Then for

domains 3 and 5

(5 )

D2
Yo d ( ) + YT ~ (pE) (6)= - A - - puH
Yv dV Yv dV

Yo d YT d
D3 - - A - -(pu 2+p) + - -Cpu) (7)Y dV Y dV·v v

(8)

while for domains 1, 2, 4, 6 and 7

An exponential stretching of the axial coordinate is employed in

domains 1 and 7:

x/C s in 10 = e

1
-x/C r

.i 11 70 = - e

(9)

(10)

(11)
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while in all other domains cr = x/C. In dQmains 3 and 5 (the

blade rows) the transverse coordinate is linearly scaled to

span the blade-to-blade ·~assage:.

while in all other domains v = y/S.

Each of the computational domains is divided into a rectangular

grid of fixed mesh size ~cr by ~v. The spatial derivatives in

Equations (1) to (4) are replaced by centered difference for­

mulas of second order accuracy. Second order accuracy in the

time derivative is obtained by a two-step procedure described

in References (9) and (10)~.

C. Boundary conditions. The four types of bound­

aries which will be encountered in the current calculation do­

mains, illustrated in Figure (1), are

(1) The solid blade surfaces indicated as T for

top and B for bottom.

(2) The horizontal surfaces extending upstream

of the leading blades, downstream of the

trailing blades and between the two sets

of blades, again indicated as T for top and

B for bottom.

(12)
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(3) The inflow boundary indicated as L.

(4) The outflow boundary indicated as R.
".;-

All spatial boundary conditions must be specified so that the

problem is properly posed and so that the computation can

march ahead in time at all grid points. Statement of the

boundary conditions is facilitated by separating the computa­

tional field into seven (7) domains as discussed earlier.

Solid Blade Surfaces At the blade surfaces adjusted by a dis­

placement thickness to account for the boundary layer, which

will be discussed later, the boundary condition is that the

surface is impermeable. It is noted that while the blade sur­

face itself may be translating, additional motion of the ef­

fective surface can take place due to non-steady displacement

thickness fluctuations. The normal pressure gradient is de-

termined from the normal momentum equation at the wall; the

normal gradients of the remaining variables are obtained from

non-centered finite difference approximations. The transformed

normal momentum equation to be used for evaluating the pressure

gradient at a blade surface in domains 3 and 5 is:

=

(13)
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where

C = Cs
in domaln 3

5 = 5s

Page 13

5 =5r

in domain 5

This equation makes use of the fact that the transformed ve­

locity component

dv
B = dt

C
= (~ V - Y u - Y )/Yaoo a T v (14)

at the surface, including the unsteady motion of the surface

is zero and flow is tangential relative to the surface. The

derivatives Ya ' Yaa ' YaT and YTa are evaluated by determining

the displacement thickness at each point and then forming these

derivatives from coordinates equal to surface plus displacement

thickness.

Non-Solid Surface Boundary Conditions In order to clearly de­

scribe the application of the boundary conditions in the pre­

sent analysis it is useful to clarify the discussion by intro­

ducing several rotating devices that illustrate certain general

concepts with minimal complexity of the geometric configuration.
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First, consider a symmetric three bl.aded rotor developed into

a cascade as shown in 'Figure (2) .

.--l.
-x

<5 -------~b
-y --------

s ------- -<fZ7Zll2b.. a
a --------

,c===>. c

y,<!>

a

FIGURE 2. ISOLATED BLADE ROW.

Let control surfaces* be drawn from the blade leading and

trailing edges to too. By considering both the cascade and

end view of the blade row and using a reference frame fixed

to the blades it is clear that, the flow field in each of the

three passages is identical. That is, the flow anywhere on

line <5 is identical to the flow at corresponding points on

*These control surfaces are, in general, not coincident with
streamlines but are perpendicular to the cascade; flow can
cross them and disturbances can propagate along and across
them.
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line S and similarly for line a and y. A similar agrument

also applies to points in the flow field downstream of the

blades.

Next consider the system composed of a rotor and stator each

having the same number of blades; specifically, consider 3

blades each as shown in Figure (3a).

When the blades are aligned, say at time to; as shown in Fig­

ure (3a), it is clear that, because symmetry produces identi­

cal flow channels, the flow along and through the control sur­

faces extending from x and between leading and trailing edges

is the same in each IIpassagell; i.e., all influences with re­

spect to corresponding points in the respective IIpassagesli

are necessarily the same. For a different relative position,

say at some later time to + 6t for example, see Figure (3b),

the noted symmetry persists since the geometry of respective

IIpassagesli is the same and again the flow through the respec­

tive contr~l volumes is identical. The same conclusion as a­

bove is also reached regarding the equivalence of lines awith

y and 6 with S. The same argument again can be applied to the

flow field between the two blade rows and also downstream of

the second blade row.

It is to be noted that due to the repetition of identical con­

figurations with identical flows it is clear that only one pas-
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sage of each, namely the first blade row, say the stator, and

the second blade row, say the rotor, need be computed in order

to determine the flow field in the whole periphery of the stage.

As a consequence of the equivalence of the corresponding dashed

lines, it is also clear that the boundary values, say on line

0, can be specified by equating them to the currently comput-

ed values at corresponding points, in this case on line S, to

define the boundary conditions for the control volume being

computed. Similar reasoning is applied to lines y and a re­

spectively and to corresponding horizontal boundaries between

and downstream of the blades.

It is not obvious that the case of unequal number of blades

in stator and rotor can be treated analogously; however, the

following detailed explanation is intended to demonstrate

clearly that the above techniques for specifying boundary con­

ditions on a single passage can be extended to this case by

introduction of a phase shift. In this regard a pair of blade

rows, shown in Figure(4a) and (4b) portray the configuration

of a 3 bladed stator followed by a 4 bladed rotor which will

be used to demonstrate the unequal spacing techniques.

The unde r 1yin gas sum pt ion her e i s t hat the con di t ion s 'Ve.ry

far upstream and downstream (x~±oo) of the stage are uniform

and steady, and that the nonsteady flow in the vicinity of
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the stage is periodic in time (i.e., stable). The first

question that arises is whether the starting process associ~·

at~d with an arbitrary set of initial conditions does indeed

lead to an asymptotically periodic solution. It is most use­

ful to next pictorially describe the actual physical starting

process for a system ~f blade rows set into motion impulsive-

ly. This is done for the configuration introduced above with

both the rotational speed and free stream velocity subsonic.

Figures (5a) to (5m) show the development of disturbance waves

thus generated. Only those waves generated-when a blade of

the rotor is aligned with a blade of the stator are portrayed

i~ these figures and then only a portion of each wave, extend­

ing a distance xw, as shown in Figure (4c), are shown for clarity.

One complete revolution of the rotor, an angle of rotation of

2rr, is represented over 12 intervals. The time increment for

each i nterva 1 is

l.\ t = = (15 )

where N is the number of blades in the stator, M is the number

of blades in the rotor and w is the rotational speed. The cor­

responding angular change for each l.\t is

l.\¢ = 2rr =NM
2rr
IT (16 )



TR 168 Page 20

-x

<D~_ 1-
Xw

T
@ @

9. 0 9~
o 0 ~ oO_w
(c) t = 1... 2n

6 w

2n
ep 7: r

I I

o ~ 0 0•
OO~OOO
( b) t = i ~ .2:

ep = 2n
12

a:
I

~W 0o 0•
OO~OOO

(a) t=O
ep=O

o ~ (; 0
•

OOo~~O
(e) t = - -'!!.

3 w
A. _ ~n
't' - 3

O. 0 ON
• •000 to_w

(f) t = L. ~
12 w

_ 5
ep - 12 . 2n

FIGURE 5. STARTING PROCESS SHOWING DEVELOPMENT OF DISTURBANCE
WAVES FORMED WHEN BLADES ARE ALIGNED (ACTUAL SOLUTION)



TR 168

t-x

Page 21

I I I I ---I I

0 ~ 0 0 0 ~ 0 0 0 ~O o Y,4>

+ • f •
toOO~o +000+0 +OOO~--w

(g) t = 1.. ~ ( h) t = L £:!!. ( i ) 2 2n
t = "3 -

2 w 12 w w
cf> = 21T 7 2

cf> = 12 ~2n cf> = - • 2n
2 3

FIGURE 5. (CONTINUED)
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Each time two blades are aligned, indicated by an arrow in

Figure (4a) through (4m), a pulse, shown as a large dot at

x=o above the alignment, is created; this pulse then travels

out to form a cylindrical disturbance wave with increasing

radius in time. Figure (5a) has a pulse labelled (1) created

at t = 0 where the two reference blades (cross hatched) are

aligned. This pulse forms the wave, labelled (1) shown in
27T 27TFigure (5b) after ~t =~ or ~¢ = 12' and a new pulse, la-

bell~d (2), is created where the next two blades are aligned

(see arrow). These disturbances, (1) and (2), travel out to

the positions shown in Figure (5c) and a new pulse, labelled

(3), is created where the next set of blades are aligned,

(see arrow). The subsequent Figures (5d) through (5m) show

the waves travelling out further and new ones being created

s i mil a r 1y to Fig ures (5 a) t hr·o ugh (5 c) . The fir s t t hr ee wa ves

are identified in Figures (5a) through (5d) and (5m). Figure

(5m) can be considered as an asymptotic picture where the

wave front in the whole periphery at a distance of x=(a~u)·12~t _

is almost flat. If asymptotic configurations at three times

are now considered, say at times to' to + ~t and to + 2~t, as

portrayed in Figures (6a) through (6c), several important con­

clusions can be drawn. Consider first the geometry of the con­

figurations~ In Figure (6a) the cross hatched refe~ence or first

set of blades are aligned (note the control volume indicated by

the dot-dash, border, '-'-, to the top and right of it). In
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FIGURE 6. ASYMPTOTIC DISTURBANCE PATTERNS GENERATED
WHEN A ROTOR BLADE IS ALIGNED WITH A STATOR

\

BLADE.
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Figure (6b), representing a time 6t later, the next or second

set of blades to the right are aligned (also note the corre-

sponding control volume as described above. Finally, in Fig-

ure (6c) 26t after reference time to the third set of blades

are aligned (this also corresponds to the two blades at the

far left of Figure (6C), thus the control volume to the right

of this set of blades shall be noted). Each of these dot-dash

control volumes correspond to the same relative geometry and

it can be seen by direct comparison that the asymptotic wave

pattern is identical in each. The same thing is true at all

other possible relative blade positions. (this also means all

other times)which are encountered as the reference blade of

the rotor moves through one complete blade spacing of the

stator. It is thus possible to construct the entire asymptotic

solution of the periphery at anyone instant (and, therefore,

at all instances) from all of the asymptotic periodic solu­

tions at successive times found in one blade spacing control

volume as the reference blade of the rotor travels through

one blade spacing of the stator.

Next consider the dash-dash, ---, control volume always lying

to the right of the stator reference blade. This is the ref-

erence control volume within which all solutions for the flow

upstream of the stator will be found as a function of time.

Consider now the asymptotic wave pattern which would be found

to the right of the reference control volume at time t o+26t
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in Figure (6c). It is obvious that it is identical to the

wave pattern within the reference control value in Figure

(6b) at time to+t.t or one t.t ago (arrows IIA II ). Next con­

sider the asymptotic wave pattern which would be found to the

1e'f t 0 f the ref ere nce .c 0 nt r 0 1 val ueat tim e t 0+ 2t. t i . e ., i n

Figure (6c). Again it is obvious that it is identical to the

wave pattern within the reference control volume in Figure

(6a) at time to or two t.t ago (arrows "B II ). In view of this

fact, the appropriate portions of the earlier solutions fo~nd

in the reference control volume can be applied as boundary

conditions to the reference control volume at the current time

before proceeding with the computation for the next t.t. This

is carried out, refer also to Figure (4a) and (4b), by equa­

ting the values at the first row of exterior grid points, say

line 6, to the values that existed earlier, t.t ago, at cor­

responding points, in this case line S, when the geometrical

configurations with respect to lines aand S were the same. A

similar procedure is carried out for lines a and y with its

own phase lag.'. In addition, all other horizontal boundaries

(those between the blade rows and downstream of the rotor) and

vertical boundaries which require phase lags for proper speci­

fication are specified analogously. These vertical boundaries.

are on the downstream side of domain 4 and the upstream side

of domain 5.

Consider now the starting process for the computational model.
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Figure (7a) through (7m) protrays the computational starting

problem comparable to the actual physical one shown in Figure

(5a) through (5m). The -successive application of the boundary

conditions in this manner puts a phase lag into the degree of

accuracy of the imposed boundary conditions as the computation

is started. As in the actual physical startingprocessdisc~s­

sed earlier, blade alignment, indicated by an arrow between

blades, produces a pulse, indicated by a dot and identified in

the first three waves in the Figures (7a) through (7d) and in

Figure. (7m). Initially there are no previously computed bound­

ary conditions with phase lag to apply, hence, the IItagged ll

disturbances created in the reference control volume are of

minimal accuracy and as such are indicated by using dotted

curves. When a more accurate boundary condition is available,

i.e., when each side of the reference control volume can be

specified from the solution at an earlier time, the accuracy

of the solution within the control value will be improved.

This is indicated by dashed lines, as for example in Figures

(7~)_ and (7f) etc. The boundary conditions with phase lag are

applied as already discussed previously and the arrows in Fig­

ures (7a) through (7d) give examples of the phase lag for sev­

eral cases. As the solution proceeds in time it also becomes

more accurate due to the repeated application of increasingly

accurate boundary conditions; this is indicated schematically

by an increasing solidity of the lines depicting the wave

. fronts in ~1~ure (7).
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Ultimately all solutiuns of lesser accuracy propagate and de­

cay at infinity and only the increasingly more accurate dis­

turbances remain. The result is that the waves associated

with the approximated starting process are lost and the solu­

tion becomes asymptotic the same as shown in Figures (6a)

through (6c). The criterion which determines the improvement

is not the anguler distance that the rotor has travelled, but

is the number of times the boundary conditions have been ap­

plied; consequently, the larger the number of blades, the

better is the solution after a complete revolution of 2n. An

asymptotic periodic solution exists when successive solutions

possess periodic relationships and phase lags with respect to

each other so that these periodic relationships and phase lags

correspond precisely to those imposed by the method of bound- .

ary condition application.

Horizontal Surfaces The horizontal surfaces are specified by

the previously discussed technique which is based on the fact

that these surfaces are IIplanes of equivalence ll with a phase

lag. Figure (8) shows a typical domain. A row of "virtual ll

grid points in this case k = 1 and K = KSP is placed one mesh

point outside the calculation domain at which the flow condi­

tions are equal to those existing at corresponding grid points

one mesh point inside the opposite boundary, in this case

K = KSM and K = 3 respectively, at a time when the blade posi­

tions at that opposite boundary were the same as currently exist
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along the subject boundary.
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Specifically the phase lags for these horizontal boundaries

are as follows: Let there be N blades in the upstream blade

row and M blades in the downstream blade row with N < M < 2N.

Also let n be the number of time steps required for one blade

spacing of the larger gap to be traversed and m the number of

time steps required for the smaller gap to be traversed. There

results first of all

Nn = Mm

There are four sets of boundaries to be considered. These

are and consist of:

'A: The upper left set consisting of domains 1,2

and 4, adjacent to K=KS.

,B. The upper right set consisting of domains' 6

and 7, adjacent to K=KS.

c. The lower left set consisting of domains 1,2

and 5, adjacent to K=2.

D. The lower right set consisting of domains 6

and 7, adjacent to K=2.

(17)
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The specific phase shifts are as follows:
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( 1) A at K+KSP = C at K=3 (n-m) time step ago

( 2) B at K+KSP = D at K=3 (n-m) time step ago

( 3) C at K=1 = A at K=KSM (m-(n-ni)) time step ago

( 4) D at K=1 = B at K=KSM (m) time step ago

The values computed at every time step at K=3 and KSM must,

thus, be stored for later use. Since a considerable number of

time steps are involved, this cannot be done using the program

cor~ and is done instead by disk or tape storage and recall.

Inflow and Outflow Boundaries The transformation for x in do­

mains 1 and 7 remove the extreme boundaries (for J=2) 1L and

7R (for J=JS) to too at which point the disturbances will have

decayed so that steady compressor performance values can be as­

signed there. Virtual grid point values for all other vertical

surfaces, except 3R, 4L, 5R and 6L, when displacement thickness

on the blades are included, are determined from the computed

values located within the adjacent domain so that spatially

they are in the same position. Refer to Table I for this and

the following discussion for specific distribution of equiva­

lents. Virtual grid point values for 3R and 5R are evaluated

by reworking the inflow from 4L and 6L into step profiles (to

account for displacement thickness) and for 4L and 6L by rework­

ing the outflow profiles from 3R and 5R respectively from step­

like profiles (due to displacement thickness) into wake-like
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TABLE I

EQUIVLANETS WITH AND WITHOUT PHASE LAG

Doma fn Doma in
and u and J Comments
(Exterior) (Interior)

1 ( 2) = _00 Free stream

1 (JS) = 2(2)

2 (1) = Interpolated between l(JSM) and I(JS)

2 (JS) = 3(2)

3 ( 1) = 2(JSM)

3 (JSp) = 4(3) Reworked when 0* is in-
cluded.

4 ( 2) = 3(JS) Reworked when 0* is in-
cluded.

4 (JS) = 5(2) Interpolated with or with-
out phase 1ago

5 (1) = 4(JV)* Interpolated with or with-
out phase 1ag .

5 (JSp) = 6(3) Reworked when 0-* is includ-
ed.

6 ( 2) = 5(JS) Reworked when 0* is in-
cluded.

6 (JSP) = Interpolated between 7 ( 2) and 7 ( 3)

7 (~) = 6(JS)

7 (JS) = +00 Downstream

*JV determines C4 (see Figure la), C4 = C2/(JS-JV).
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profiles. It is to be noted that in order to obtain spa­

tially equivalent grid points for boundaries 4R and 5L ac­

count has to be taken of-the relative motion of the blades

and interpolation of quantities as well as phase shifts are

r~quired.

In the case of equal blade spacing for adjacent stages match­

ing flow variables along surfaces 4R and 5L is straight-

forwa rd; in, any other case certa in sub 1et i es accrue in the

process of minimizing the computer storage and time require­

ments. Again a column of grid points external to domains 4

and 5 are considered. In the regions of overlap shown in

Figures (9a) and (9b), it is clear that the exterior column

of points from domain 4 overlaps the interior of domain 5,

and viceve r sa. Howe ver, for- the reg ion s 0 f II non - 0 ve r 1a p II

determination of the flow variables at these exterior grid

points is accomplished by a phase lag technique, analogous

to the equivalence technique discussed above, which is based

on the blade positions during a full cycle of movement of

domain 5 relative to domain 4. In the case of equal spacing

the- time-delay is zero, and the regions of non-overlap label­

led IIl eft ll and "r ight ll in Figure (9a) have a direct corre-­

spondence. On the other hand, in the case of fractional (non­

integer) spacing the matching of conditions along the region

non-overlap must be based on a correspondence of relative
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FIGURE 9. VERTICAL BOUNDARIES BETWEEN DOMAINS 4 AND .5.
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blade positions, which introduces a phase lag in the bound­

~ry conditon applied on surface 4R and 5L.

This phase lag is analogous to that discussed earlier for

the horizontal boundaries. The only added feature is that

up to three separate sets of data each with its appropriate

phase shift must be applied since the overlap can be such as

shown in Figure (9c) which clearly shows three regions where

data must be provided. Thus th~ J = JS values for domain 4,

refer to Figure (8), are equal to the J = 2 values of domain

5 at phase shift times having up to three different values,

as discussed earlier, and the J = 1 values for domain 5 are

equal to the J = JSM values for domain 4 at phase shift times

having up to two different values. Even though only two are

needed, three are specified since the non-overlap region can

be either above or below the larger blade gap. The interpo­

lation merely ignores the extra values.

The upstream infinity boundary is completely specified by im­

posing the pressure, p, temperature, T, the axial velocity, u

and. the normal velocity, v. This determines the value of the

incoming mass flow, momentum flux and total enthalpy flux. The

time-averaged outgoing mass flux when integrated over the com­

plete peripheral annulus of the compressor is necessarily equal
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to the incoming value when the compressor operating conditions

are fixed Since the upstream and downstream infinity boundaries

are assuffi2d to have steady flow, the product of density and axial

velocity at the downstream boundary is taken to be equal to that

at the upstream boundary

P u = p ue e ~ 00

The total enthalpy flux at the downstream boundaries will differ

from the inflow value by the work done by the compressor on the

fluid. This difference is evaluated by determining a time and

space averaged normal velocity component, vi' at some station

between the two blade rows and determinjng the relative total

enthalpy of the downstream stage with respect to the relative

total enthalpy of the upstream stage:

( 1,8)

(19)

where wI arrd w2 are the angular velocities of the two respective

stages and r is the mean radius of the blades. Since the relative

total enthalpy is constant

The normal component of velocity at the exit~ ve ' is determined

by use of the normal momentum equation
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, where Pndx is the time averaged normal component of pressure

integrated over the horizontal projection of the upper and

lower blades of the downstream stage. The axial momentum

equation'

._ {(DRAG1 -= P v 2 + P .
00 00 00

~Pndy) - (DRAG2 ­

\ Yu
j dy

Ye

(22)

pressure along upper

variable P u 2 + P .e e e

(Where DRAG1 and DRAG2 are the boundary layer drag contributions

discussed earlier and ~PndY is the horizontal component of

and lower blade surfaces) provides the

Thus the flow variables (Peue), (P eue
2 + Pe)'

ve and He are inserted into the definition of total enthalpy.

= y Pe + k(U 2 + v 2He y-1 p 2 e e
e

(23)

to solve for the pressure Pe and subsequently.

and

(24)

(25)
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Thus the downstream b~undary conditons are completely speci­

fied in terms of the upstream boundary conditions and the

compressor work.

The application,of the boundary conditions, as described above,

will asymptotically impose periodicity at the boundaries; the

non-steady computation within the calculation domains will,

therefore, yield asymptotically a periodic solution. The so­

lution will automatically contain the stationary and travelling

waves.as well as the nonuniform flow at the trailing edge of

the balde rows due to boundary layer and/or wake formation.

It is emphasized that the development of this technique does

not assume axial symmetry or existence of a peripherally

periodic solution having wave length less that 2n. It is

only assumed that the flow very far upstream of the fan or

compressor is uniform. The peripheral distortion that results

at the fan or compressor face due to the interaction of an un­

equal number of blades in the rotor and stator is obtained by

considering a single blade-to-blade passage as a function of

time with the appropriate phase lag in the imposition of bound­

ary conditions on the peripheral (horizontal) boundaries. The

peripherally distorted flow field pertaining to the entire an­

nulus, consisting of all blade-to-blade passages, at any in­

stant can then be deduced from the non-steady solution for the

single passage after periodicity (in time) has been attained.
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The time requirement to establish periodicity in the most

general case is, in principle, one complete wheel revolution

however, a fraction of ~ revolution is probably sufficient

in most practical cases since the strength of the disturbances

emitted decays rapidly with distance from the fan or compres­

sor. The strongest disturbances are the shock waves emitted

by a supersonic fan or rotor, which will decay linearly with

distance!!, in the absence of interference effects. The de­

cay rate for a wave train will be faster due to destructive

interference between a trailing wave and the leading wave of

the next disturbance. Consequently the time to reach a

periodic solution will be less than a complete wheel revolu­

tion; the numerical results obtained thus far suggest it will

be a small fraction of a revolution .

. Dj 'Boundary layer analysis. One of the principal

phenomena contributing to the non-steady flow components in

compressors is the passage of a downstream blade through the

wake of an upstream blade. The development of the boundary

layer and wake must thus be included in any study which pro­

poses to give a meaningful representation of the non-steady

disturbances (including noise) in the flow field around and

through a compressor. After due consideration, it has been

concluded that a detailed analysis of the boundary layer it­

self is inappropriate in the present context. It is the wake

shed by the blades which is of immediate concern, and the wake
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carries only integral type information about the upstream

boundary layer, e.g., total skin friction drag as opposed to

10c41 skin friction coefficient. Certain simplifications

and assumptions are, therefore, invoked based on the von

Karmen integral relatipns. Thus the displacement thickness

and shape factor are the quantities which are determined a-
. .

long the blades so that the displacement effect and momentum

loss due to skin friction can be evaluated. This is necessary

not only for correctly evaluating the flow between blades but

also specifying the downstream boundary for a given set of up­

stream conditions. The choice of laminar or turbulent vis-

cosity coefficients is determined by the local Reynolds num­

ber, Re = pux/~ and its comparison to a crictical Reynolds num­

ber.

The boundary layer is' treated as quasi-steady; that is, at

any given instant of time the boundary layer is assumed to be

a function of space variables, in this case x, only. In other

words the time required for the boundary layer to adjust it­

self is assumed to be much less than the time required for
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(a) Displacement Thickness - The displacement thick-

*ness, 0 , at any point is formed by evaluating

and forming

*do
dx =

*do *= ~ (6x) + 0,'.ux

where (a) and (b) are coefficients which depend on the state

of the flow. (b) ·is 0.5 for laminar flow and 0.2 for turbu­

lent flow. (a) is a parameter determined as follows. Solu­

tions of the Falkner-Skan equation for laminar flow give

with

and

13= 2m
M=l

where

m -_ x du
u crx'

h(I3) = n - f
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is a curve fit of the Falkner-Skan solutions (Reference 12).

For turbulent flow a velocity profile

u
IT = (32)

is assumed with n an input to the program and

A = 0.8'
(n l +l)

[0.027(I+~') (2+""1 0.8 (33)

where

n l
kpx

= n - (34){ 1 + (kp )2}!z
x

Px = ~ (35)
dx

and k is an input to the program. Thus n' differs from n by

at most 1. This representation of the turbulent power law

profile could be further modified if necessary by multiplying

the second term on the right hand side by Equation (33) by

another constant, say k ' ; then k l would determine change of n l

from n.

(b) Drag or Momentum Loss - the drag du~ to the

boundary layer at the surface of the blades is found by evalu­

ating the local shear stress (Reference 13).
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T = u2
-H-

*
(£L)
dx
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(36)

and'integrating it numerically along the surface to give the

drag of one side of the blade, namely

DRAG = (l~Ti) dx (37)

the shape factor H is determined for laminar flow from

and

H

...
= = n - f

(38)

so that g(S) (Reference 12), as well as h(S), is a curve fit.

for turbulent flow

H = (2+n l
)

n j

(see Reference 14). M in Equation (36) ;s the Mach number.

Total drag of a blade is the sum of the lower and upper sur­

face contributions. This total drag is then deducted from the

momentum of the inviscid flow contained between the trailing

(39)

(40)
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edges of the blade pair in question.

Page 49

A blade wake having a thi.ckness approximately equal to that

of the boundary layer at the trailing edge, but not less than

the finite difference grid size, is then included in the in­

viscid flow at the trailing edge. This wake is formed such

that the total fluxes of mass, momentum (including now the·

skin friction drag) and energy are conserved at the trailing

edge of each blade row.

Therefore, the blades of the following. blade row will move

through a flow field which includes the wake of the upstream,
blade row as represented by thin regions having correct inte­

grals of mass and momentum defect and approximately correct

thickness. The development of the boundary layers on the

downstream blades will be calculated in the manner described

above, and by the same procedure will also form wakes which

wi 11 persis tin the down s t rea m dire c t i, 0 n .
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III. DEMONSTRATION OF THE METHOD
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A. Verification of the numerical solution. Appli­

cation of the computer program under development to analysis

of the configuration shown in Figure (10), consisting of an

infinite cascade of non-rotating symmetric airfoils, was car­

ried out as' a verification test of. the numerical method. Of

particular concern was the ability of the numerics to provide

a reasonably accurate rendition of the leading edge singular-

i ty .

I

j I
O.O-8-~----::~-----i

1 L .. I=.J
FIGURE 10. TEST CONFIGURATION

Figures (11) and (12) show the Mach number and pressure distri-

butions, respectively, obtained over the airfoil surfaces. Fig­

ure (11) also shows a comparison of the present results and those
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computed by the relax~tion technique of Katsanis 15 , using

the same grid spacing. Excellent agreement is found over the

central part of the airfoil and it appears that the present

results are reasonably accurate near the singular points, even

with an admittedly coarse grid (~x = 1/10 chord).

B. Illustration of rotor-stator interaction. A

rotor-stator configuration which incorporates thickness, cam-

ber and angle of attack effects, pictured in Figure (10), was

selected to illustrate the ability of the method to analyze

non-steady flows due to interaction of adjacent blade rows.

The upstream stationary blades are again.8% thick but camber­

ed such that the upper surface is a straight line inclined at

_45 0
., The downstream rotating blades are the same 8% thick

uncambered symmetric airfoils as previously studied but with

the mean line inclined at +45 0
. The s~lidity is unity. The

free stream velocity vector is alinged at _45 0 and the Mach
.

number is 0.65. The rotational speed of the rotor is 12

times the free stream velocity. Thus, if the blades has nei~

ther thickness or camber they would produce no flow deflection

or work. This general configuration was initially selected to

correspond to that considered by Kemp and Sears?, however, the

Mach number and blade thickness were selected to correspond to

the previous calculation of an isolated blade row. Consequent­

ly, significant compressibility effects were introduced which

precluded a direct comparison with the Kemp and Sears solution.
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This stator-rotor configuration produced, after 480 time

steps, the instantaneous surface Mach number distribution

shown in the lower portion of Figure (13). An imbedded super-

sonic region is clearly evident. The corresponding pressure

distiibution is shown in Figure (14). This figure, in addi­

tion, shows the pressure distribution on the line midway be­

tween the blades (indicated as mean). Results for long times

indicate practically the same distribution, altered slightly

by the blade interaction phenomenon.

The pressure variation at the two points labelled (6,7,2) and

(6,7,7) downstream of the rotor, see Figure (13), is shown in

Figure (15).* These variations, discounting the initial start­

ing t~ansient, have a frequency of about 1 cycle per 80 time

steps, which corresponds to the natural frequency of the ro­

tating system, i.e., 80 time steps is the blade passing fre-

quency. This same frequency manifests itself in the peripheral

(Y) and axial (X) force variation on the rotating airfoils as

shown in Figure (16).

The'corresponding pressure variation at points (2,7,2)and(2,7,7)

upstream of the stator are shown in Figure (17). These varia-

*These points are in a coordinate system 'rotating with the stator.
Thus the noted time variations are directly attributable to the
rotor-stator interactions l~ather than quasi-steady variations
associated with the rotor blade passing a fixed point in space.
Obviously, the results at a fixed point can also be obtained
from the solution and will be discussed later.
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Cp

0
MEAN

1.0

Cp -0.5

UPPER (U)
01--------4--+---IH----+--4---i--f-----

0.51-------I-H----+----+-l1--~-+-----

--0.51-------1--\---1-+----+----+-----

. 1.0

6543

0..-----+4---I---+-----++----1t----

0.5t-----+-t----f--\t------t----+----

- 0.5"--------'"------&.-----'------'-----
DOMAINS 2

-1.0

FIGURE 14. PRESSURE DISTRIBUTIONS ALONG UPPER(U) AND LOWER(L)
BOUNDARIES AND MEAN LINE
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tions, after the init~al starting transient, have a much

smaller amplitude and have a frequency of about 1/5 that of

the downstream variations. The amplitude of the upstream

running waves is reduced by the imbedded supersonic region

which causes reflection of the upstream travelling signals

from the rotor and by the generally higher Mach number in

the region between the stator blades. The peripheral (Y)

and axial (X) for~e variations on the stator blades, shown

in Figure (18), also occur at this lower frequency, since

less than 1/4 of a cycle appears over 80 time steps. A

more extensive coverage of the axial (X) force variations

of both sets of blades is presented in Figure (19). A com­

parison'of the frequencies reveals a ratio of about 1/5 be­

tween them. The sol id portions of the curves' are from re­

sults at every time step whereas the dashed lines are infer­

red from the pressure variations on the blade such as the

ones shown in Figure (20), and the indicated data points.

The observed ratio of 1/5 in the frequency is a consequence of

the particular flow conditions selected for this case, and

can·be explained as follows: consider a disturbance emitted

with a particular wave length A. The ratio of the signal

speed c to frequency f will be the same as the disturbance

travels upstream and downstream with the given wave length:



-0
.1

4
r
-
-
-
-
-
-
-
-
-
-
,
.
-
-
-
-
-
-
-
-
r
-
-
-
-
-
-
-
.
,
-
-
-
-
-
-
-
-
-
,
O

.
2

2
;ci

-
-
-
-
-
-
-
-
:
:
!
!
o
~
-
-
-
-
-
-
-
t
-
-
-
-
-
-
-
-
-
1
0
.
2
1

w
_

o fie ~ ..
J
~

0.
13

I
-
-
~
,
-
-
-

o en de w ~ o I 2 o Z

O
.
1
2
~
-
-
-
-
-
-
.
!
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
~
O
.
2
0

\
j

7
2

0
7

4
0

7
6

0
7

8
0

8
0

0
~ (l

)

N
U

M
B

E
R

O
F

T
IM

E
S

T
E

P
S

~

FI
G

U
RE

1
8

.
PE

RI
PH

ER
A

L
(Y

)
AN

D
A

X
IA

L
(X

)
FO

RC
E

ON
ST

A
TI

O
N

A
RY

BL
AD

ES



iJ
J o Ca:
:·

0.
1

I.L -' ~ z o (J
) z w ~ - C I Z o z

0
.2

0.
0

I
-
0
,
~
-
X
(
S
T
A
T
O
R
)

/ /
'l·

--'-
-
0

.....
.

.
'.

.....
....

.....
0

.
.....

'"
/

..
..

..
..

0"
""

"
.

1
"-

--
'

.....
.,

"

I
\

I
r!

\
@

\
,

.

I
\

.
ic

s>
-r

-X
(R

O
TO

R
)

~
(
)

,

'
-
~

r
I

I
~

I
'-~

/
~

I
\

."r
\

.
"
,-

/
-.,.,

""
I

I
\

I

I
I

'....
)'

\
,

J
V

-
-
/

I
I

\
/

/
(D

I
/

/
--..
'
~

I
~
_

_
;9

..... en co

o
10

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

N
U

M
B

E
R

O
F

T
IM

E
S

T
E

P
S

FI
G

U
RE

19
.

A
X

IA
L

FO
RC

E
V

A
RI

A
TI

O
N

OF
ST

AT
OR

AN
D

RO
TO

R
BL

AD
ES

en N



(3
,7

,2
)

(5
,1

,2
)
~

I
.I

O
c
-
-
-
-
-
-
:
-
-
-
=

=
=

:
:
:
F

=
:
:
:
:
:
:
:
:
:
:
:
:
-
-
-
-
-
-
-
,-

-
-
-
-
-
-
-
r
-
-
-
-
-
-
-
-
,O

.9
3

;;
0 ..... 0'
1

0
0

1
.
0
9
1
-
-
-
-
-
-
-
-
-
t
-
-
-
-
-
"
~
-
-
-
-
-
+
-
-
-
-
-
-
~
-
-
-
+
-
-
-
-
-
-
-
l
O
.
9
2

1
.0

S
L

-
-
-
-
-
-
-
-
-
-
-
'-

-
-
-
-
-
-
-
-
-
-
-
'-

-
-
-
-
-
-
-
.L

.-
-
-
-
-
-
-
-
l
O

.9
1

7
2

0
7

4
0

7
6

0
7

8
0

8
0

0

N
U

M
B

E
R

O
F

T
IM

E
S

T
E

P
S

FI
G

U
RE

20
.

PR
ES

SU
RE

V
A

RI
A

TI
O

N
ON

BL
AD

E
UP

PE
R

SU
RF

A
CE

S
AT

M
ID

CH
OR

D

0'
1

W



TR 168·

where u refers to upstream and d to downstream.

Therefore,

Page 64

(41 )

= a-u
a+u

(42)

and since the free stream Mach number, M, is 0.65;

.35=
1. 65

1=
4.72

1
~

5 (43)

One other result of interest is the pressure variation behind

the rotor relative to a stationary point. Figure (21) shows

such a variation. The fact that the pressure does not return

to its original value after one cycle of 80 time steps is an

indication that the reflections from the supersonic region

are introducing another characteristic frequency or time scale

in addition to the fundamental scale given by the blade passing

frequency.
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I V• CONCLUSIONS

Page 66

Application of the non steady Lax-Wendroff technique to prob­

lems with asymptotically periodic solution offers a potentially

powerful method for the investigation of the interaction of

rotating and stationary blade rows in turbo-machinery. A nov­

el, technique for specifying boundary conditions with phase lag

has been developed to accomplish this. A complete non-linear

analysis is carried out numerically to determine the entire

flow,field without recourse to the assumption of small distur­

bances or linear equations which underlie the previous acoustic

theories. The result, obtained for the case of equal number

of rotor and stator blades show that transonic flow can be

handled without difficulty. In addition, the program is not

limited with regard to blade thickness, camber or loading. Ex-

tension of this method to incorporate viscous wakes and to anal­

ysis of fully three dimensional configuration is feasible, and

would greatly expand its utility in practical applications.

/
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