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LIST OF SYMBOLS

Note: Symbols denoting dimensional variables are accompanied by the appropriate
units in the International System (SI). All other variables are non-
dimensional. The terms ''relative' and ''absolute'' distinguish variables
defined in a frame of reference rotating with a moving blade row from
variables in a non-rotating frame.

English

a

A’B’c,-'aQ

b
B
c
c

\'2
e,f,g,h

speed of sound (yp/p)%; m/sec. .. .
displacement thickness gradient coefficient

position of characteristic and stream path locations
(see subscripts) :

stream surface thickﬁess;‘m

displacement thickness gradient exponent’
chord length; m

specific heat at constant volume; Nem/kg-+K

non-dimensional arrays containing the dependent variables p,
u, v and E (defined by Equations 49, 50, 51 and 52)

static internal energy per unit mass; N-m/kg
absolute total internal energy per unit mass; Nem/kg

relative total internal energy per unit mass (see Equation
26); Nem/kg

Falkner-Skan equation dependent variable

static enthalpy per unit mass; N-m/kg

absolute total enthalpy per unit mass; N-m/kg

relative total enthalpy per unit mass (see Equation 25); N-m/kg
grid column corresponding to ¢ = 1

a constant, defined by the context of its usage

grid row corresponding to v = 1

a reference length (axial chord length is used in the computer
program); m

wake width parameter

meridional distance; m

pressure gradient parameter

normal distance; m

turbulent boundary layer profile exponent

modified turbulent boundary layer profile exponent

vii
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English
N. number of blades in ith blade row
i ] 2
) static pressure; N/m
q magnitude of the velocity vector; m/sec
r radius; m
R radius of curvature of slipstream; m
R gas constant; Nem/kg-K
R Reynolds number
RT Townsend's turbulent Reynolds number
s distance along stream path; m
S entropy per unit mass; N-.m/kg-K
t time; sec
T static temperature; K
u meridional velocity component; m/sec
v relative circumferential velocity component; m/sec
v absolute velocity vector; m/sec
Vm meridional velocity component; m/sec
v absolute circumferential velocity component; m/sec
W Cole's wake function
X meridional distance; m
y relative circumferential distance; m
axial distance; m
Greek
o non-dimensional circumferential distance variable used to
form composite solution
B8 pressure gradient parameter in Falkner-Skan equation
Y ratio of specific heats
8 boundary layer thickness; m
6* displacement thickness; m
€ kinematic viscosity coefficient; Nem-sec/kg
z normal component of vorticity vector; sec
n non-dimensional distance normal to a particular surface point
8 absolute circumferential angle; radians
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LI1ST OF SYMBOLS {Continued)

0 momentum thickness; m

M viscosity coefficient; N-sec/m2

v normalized circumferential coordinate (either absolute or
relative) '

3 non-dimensional distance along a tangent to a particular
surface point

™ 3.14159 ...

p static density; kg/m3

o] normalized axial coordinate

T non-dimensional time

T shear stress; N/m2

o slipstream angle, measured on stream surface with respect
to meridional coordinate; radians

¢ stream path angle at leading edge; radians

3 vorticity vector; sec_1

Q angular velocity of rotating blade row; radians/sec

Subscripts
Z:?:g:g’} evaluated at points A,B,C,D,E,F,0,Q in Figures (6) and (7)

e evaluated at bltade surface
evaluated at outer edge (front) of wake

i index identifying computational domain

i time count index

i index identifying grid columns

k3 index identifying grid rows

LE leading edge

2 lower boundary of blade-to-blade passage (i.e., the upper
surface of the lower blade of a blade-to-blade passage)

m minimum value

n value at next time step

o reference state

o) evaluated at a grid point under consideration
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Superscripts
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rotor
stator
trailing edge

upper boundary of blade-to-blade passage (i.e., the lower
surface of the upper blade of a blade-to-blade passage)

first blade row

second blade row

provisional or predictor value

surface~oriented coordinate system (e.g., u, v are velocity
components tangent and normal to the blade or slipstream
surface, and x, y are the corresponding coordinates)

first derivative
second derivative

third derivative



INTRODUCTION

The flow field within advanced axial flow turbomachinery for aircraft pro-
pulsion systems, specifically high bypass ratio turbofan engines, is character-
ized by the presence of mixed subsonic, transonic and/or supersonic regions,
multiple shock waves, shock-boundary layer interactions, and significant ef-
fects of three-dimensionality and unsteadiness of the flow. These aspects of
the flow field are not easily accommodated in the conventional analytical and
numerical methods available for application to turbomachinery, and the design
and analysis of advanced systems has been correspondingly constrained. A fairly
recent review of methods for steady cascade analysis (i.e., two-dimensional
compressible flow) is presented in Reference (1). In the area of transonic and
mixed ﬁubsonic—supersonic flows, the most promising approaches appear to be the
relaxation method for solution of the transonic small perturbation equation de-
veloped in Reference (2) and finite-difference solution of the complete system
of equations for an inviscid compressible flow, as applied to a cascade in
Reference (3), for example. A steady three-dimensional transonic solution for
a blade row obtained by the finite-difference method is presented in Reference
(4), and a corresponding solution for a wing using the relaxation method is
presented in Reference (5). Analyses of unsteady flows in turbomachinery have
been limited to solutions of the small disturbance equations, usually with a
view toward description of the acoustic output of turbomachinery; cf. References
(6), (7) and (8). Extension of the relaxation method to solution of the tran-
sonic small disturbance equation for an oscillating airfoil is presented in Ref-
erence (9). Thus, while important advances have been made in the last few
years, a considerable amount of work remains to attain a comprehensive predic-
tive capability in the subject problem area.

The‘present study has been directed toward development of a numerical method
of solution of the complete unsteady equations of motion for a compressible, two-
dimensional flow through a blade row (either rotor or stator) or a stage (both
rotor and stator) of a compressor or fan. The objective is attainment of a
steady solution for a single rotor or stator blade row or a periodic solution
for an interacting pair of blade rows in a stage. Either case may include
mixed subsonic, transonic and/or supersonic flow containing embedded shock waves.

The initial effort is described in Reference (10).



The analysis is formulated with respect to a blade-to-blade stream sur-
face, as depicted in Figure (1) for one passage of a blade row. The inlet
and discharge boundary conditions are applied at axial stations some distance
upstream and downstream of the blade rows. The selected boundary conditions
assume subsonic axial velocity at both stations, but admit either choked or '
unchbked operation of the blade row or stage. In the case of a single blade
row,.or the equivalent infinite cascade on a blade-to-blade stream surface,
it is immediately evident that the steady solution must possess a periodicity
in the circumferential direction with a fundamental period of 2w/N1, where N1
is the number of blades in the row. (It is implicit that the inlet and dis-
charge boundary conditions also admit this periodicity condition.) |If the
blade row is rotating these considerations also pertain in the rotating frame
of reference. Thus the computational domain need only encompass that fraction
of the flow annulus containing the flow through a single blade-to-blade passage.
The locations of the boundaries of the blade-to-blade passages may be defined
arbitrarily so long as their spacing corresponds to the blade pitch. Down=
stream of the blade row the blade slipstreams represent natural boundaries of
the blade-to-blade passages, since their spacing is identically the blade
pitch, and certain components of the solution may be discontinuous across the
slipstreams. Upstream of the blade row the boundaries have been conveniently

defined as projections of the mean camber lines.

In the case of a stage consisting of a rotating blade row and a stationary
blade row, a set of blade-to-blade passages may be defined for each blade row
in accord with the above considerations, but the noted circumferential peri-
odicity condition will not apply. As has been established from considerations
of the acoustic problem, cf. Reference (11), the flow pattern will rotate with
an angular velocity of NRQ/(NS-NR) and have a circumferential period of
Zﬂ/(NS-NR). Only in the limiting case of NR=NS’ which is usually avoided in
practice, will identical solutions occur in each blade-to-blade passage at
any instant. In the typical stage (NS>NR) the flow pattern will rotate in the
opposite direction of the rotor. The solution in any particular passage at
one instant can, therefore, be related to that in another passage at an earlier
time. This phase lag forms the basis of a cyclic procedure developed herein
for relating the conditions along the boundaries of the computational domain

(which is composed of a set of blade-to-blade passages for the two blade rows)
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to the solution within the domain at an earlier time. The cyclic procedure

will be described in detail in a following section.

The total pressure losses due to boundary layers on the blades will be
carried in the wakes of the blades. Thus, a significant contribution to the
unsteady aerodynamic interaction between blade rows and resulting acoustic
signals may be attributable to passage of one row through the viscous wakes
of the other row. Accordingly, an approximate representation of the boundary
layers on the blade surfaces and the blade wakes is also incorporated in the
present model. The considered viscous effects include reduction of the blade-
to-blade passage area due to the boundary layer displacement thickness and
turbulent diffusion of the corresponding momentum defect (i.e., total pressure

loss) in the wake.

INVISCID FLOW ANALYSIS

Fundamental System of Equations

The basic system of equations from which the present flow representation

derives consists of the statements of conservation of mass;

DV v
by yp
DT + 5 0

and conservation of energy;

De D 1, _

bt + POt (p) =0
where:

b . 2 R

bt - s v ViV

Assumption of an inviscid gas is implied by the absence of shear stress and
heat conduction terms in Equations (2) and (3). |In addition, a thermally

and calorically perfect gas is assumed, for which:

(1)

(2)

(3)

(4)



P = pRT

p

¢ 7 H0e

The energy equation can be stated in a somewhat more convenient form through

combination of Equations (1), (2) and (3);

3pE oVH =
5t + V+pVH 0
where:
E = e + % VZ
_ 1 2
H = h + 2 ) £
h = e + p/p

Furthermore, Equation (3} can also be written as:

DS _
ot 0
where:
p = ko' exp(s/C )

An important distinction between Equations (7) and 3)or (11} should, however,
be recognized. Equation (7) is in divergency or 'conservation law' form,

whereas Equations (3) and (11) are in a non-conservative form. The divergency
or ""conservation law'" form of the equation may be applied across a shock wave,

but the non-conservative form can not.

The only essential simplifications to this system of equations which are
introduced in the following development of the flow model are a reduction in
spatial dimensions of the problem from the general three-dimensional form

used above to a particular two-dimensional form, and use of small disturbance

(5)

(6)

(7)

(8)
(9)

(10)

(11)

(12}

approximations in the acoustic far-field of the machine. Derivation of the two-

dimensional system is outiined below; discussion of the acoustic solution T1s

presented in VYolume [{1I.



Absolute Stream Surface Equations

Consider a flow annulus as sketched in Figure (2). The curvilinear dis-
tance along the intersection of the mid-line of the annuius with a meridional
plane is denoted by m, termed the meridional distance. The distance normal to
the mid-line in a meridional plane is denoted by n. The circumferential coordi-
nate 8 is considered positive in the counter-clockwise direction when viewed
down the positive z axis. The thickness of the annulus b is assumed to be
small compared to the radius r; hence the n component of the velocity vector
and all variations in the n direction are neglected. Accordingly, the annulus
is termed a stream surface. Transformation of a system of equations of the
above form to the considered two-dimensional coordinate system is outlined in

Reference (12). Application of the same procedures to Equations (1}, (2) and

{7) vields:

ﬁ"i r U

e, Mmoo P Ve dee | (13)
At am r 36 rb dm

v v v aVv . 2
"m + y - A mo, 1 osp _ Vyogr (14)
at m 3m raf noooam T dm
vV AV v Ay .

sy 8 L B 6 . 1 o _ _ Vg¥a gy (15)
at m Jm v 8 pr a8 r dm

nV H
apE 5 . i 5 “Tmodrb
T A N (16)
tquation (11) transforms to:
v

as 35 6 as
e T oW T T 3T (17)

Equations (13) and (16) are in conservation form. Equations (14) and {15)
can also be cast in this form by multiplying them by ¢ and substituting Equa-
tion {13);

dr (18)
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meVe

rb

oV
“¥a
T

vaB dr 19
r dm (19)

a 1
+ — —_—
am (meVB) * r

g% (pvg + p) + gﬁg = - p
Thus, the statements of conservation of mass, momentum and energy given

by Equations {13}, (18), (19) and (16) constitute the conservative form of

the governing system of equations, and Equations (13}, (14), (15} and (17)

represent the non-conservative form of the same system of equations. The con-

servative form will be used in the interior of the computational domain,

whereas the non-conservative form will prove to be more convenient to employ

at the boundaries.

Relative Stream Surface Equations

In the analysis of the flow through a rotating blade row it is advantageous
to express the governing equations in a relative coordinate system which rotates

with the blades. Therefore, the following additional coordinate transformation

is introduced:

X = m {21)

vy = r (e-0t) at x=constant {22)
and the velocity components in the x,y,r system are correspondingly defined:

u = Vm (23)

v o= UE - dr {24)
A relative total enthalpy“ and relative total energy are defined as:

H = H - ar¥ {25)

a

*Note that the "'relative total enthalpy' defined herein is sometimes referred
to as "rothalpy' since it is not the total enthalpy which would be measured
in the rotating frame of reference. However, it is a quantity which is con-
served along streamlines in a steady rotating flow, and in this respect it is
analogous to the conventional total enthalpy in an absolute frame.



E = H - p/p

The following system of equations, expressed in both conservative and non-

conservative forms is thereby obtained:

Continuity
ks & 3pu + dov _ _ pu drb
at X Ay rb  dx

Streamwise Momentum

%%E + B(pgi+p) * 33:“ - - B g£9-+ o(v+9r)2%-%£
or,

%‘g—+u%§—+v§:—='£—g—z+w+ﬂr)2%%
Circumferential (Angular) Momentum

dov , dpuv . alev’p) | puv drb oot dr

at ax By rb X r dx
or,

%% + u %% g& = - %— %%- - ufv+2qr) %- %&
Energy

BpE’ + apuH} + ava' - puH‘ drb

at ax oy rb dx

or,

%%- + u %%- + v %%— = 0

It Is pointed out parenthetically that the above system of equations can be
applied in the relative (rotating) frame as stated, or in an absolute (sta-
tionary) frame by setting =0 and dropping the prime superscript on H and E.

in addition, the standard two-dimensional eguations of motion are recovered

(26)

(27}

(28a)

{28b)

(29a)

(29b)

(30a)

(30b)
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The lateral boundaries of domains L, 6 and 7 are the instantaneous loca-
tions of the blade slipstreams, Bs(m,t). Each domain is mapped from its shape
in physical space into a unit square by defining stretched meridional and cir-
cumferential coordinates, o and v, given (in an absolute reference frame) by:

th

g = — {in the i domain)

vo=

th

where m, refers to the location of the upstream boundary of the i domain, as

measured on the stream surface from an arbitrary axial station. The location
of the upstream boundary of domain 1, s and the location of the downstream

boundary of domain 7, Mg, can be selected arbitrarily. However, m,, My, M

3

and mg are necessarily the planes of the leading and trailing edges of the

5

first and second blade rows. The locations m., and m7 are defined to lie one

chord length upstream and downstream of the first and second blade rows, re-

spectively:

If m,, and m, are selected as the inlet and discharge stations at which the

7

boundary conditions are to be applied, domains 1 and 7 are not used. Other-

wise m, and Wy represent the inlet and discharge stations, respectively.
Transformation of Variables to Computational Domains
The relative upper and lower boundaries of the domains, Yu and Y,, are

functions of meridional distance, x, and may be functions of time, as well, in

domains 4, 6 and 7 where they represent the instantaneous slipstream contours.

(32)

Thus, the final transformetion from physical space (x,y,t) (relative or absolute)

to computational space {g,v,T) is defined by:

T = tal/L
o
X=X,
i
TT X -
i+1 i

12

{35)

(36)



v = —
Yu Yy
2 .3 2 v 3 _ % 2 Vo3,
3t 9t ot 3t  dv L T Yy, 8V
> _ 30 3 , v 3 _ 1 g3 Yoo B
ox ax 9o ax ov X 30 Y, v
B - » 2 _ 1 2
ay dy 9v Y, av
where: dy By
u 2
Yy, = Vg * (1-v) 3
y, = (y,7v,)
Xg = (xpemxp)
3y Y,
yd T V3o + (=) 90
and:
Xi=ml
Y, = T eu at x=constant
Yo = r 62 at x=constant
L is an arbitrary reference length and a is a reference speed of sound. In

addition, a reference pressure Po will be introduced below to complete the
non-dimensionalization of variables. Particular va[ues for L, a and Py will
be assigned later. It should be noted that o and v are non-orthogonal coordi-

nates. The transformation is non-singular for X5y #0.

The correspondence between the physical and computational domains is indi-

cated schematically in Figure (4). Within the computational domain Equations

13

(37)

(38)

(39)

(40)

(41)
(42)
(43)

(bh)

(45)
(46)

(47)
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(27), (28a), (29a) and (30a) are expressed concisely by:

where

and

(o34 2
)

(a2

0°Jo™n

of ', o of , g
Bog * O3 * D3) + h

u/a
o
v/a

E“/a

1

(u+r>/rm)/aO

(u/ao)
(v+p/ov)/a
O

H /a2
O

= {o

Q.
=

-

o
on

|
|

Q.

X
o
o]

(48)
(49)
(50)
(51)
)]
(v+Qr)2/a§
5 | (52)
-u(v+29r)/ao
0
(53)
(54)



Note that f=f(e),.g=g(e) and h=h(e,r,b,2) thus f, g, and h are known functions

of the basic dependent variables contained 'in e.

The above form of the governing equations is used at all interior grid
points, as will be outlined in the following section. The non-conservative
form, i.e., Equations (27), (28b), (29b) and (30b), is employed at the boundary
points in local orthogonal coordinate systems which will be discussed in con-

nection with the boundary conditions and boundary point solution algorithms.
Interior Point Solution Algorithm

Each of the seven (7) computational domains is spanned by a rectangular

grid network, having a mesh size of Ao by Av:

1/(Js-2) (57)
1/(Ks-4) ’ (58)

Ao

Av

The coordinates of the grid points are given by: )

(j-2) Ao i o= 1,2,3...J5, JS+1 (59)

Q
Il

(k=b) Av k = L4,5,6...KS (60)

<
~
]

In addition, time is advanced in increments of AtT:

T, = (i-1) At i = 1,2,3...0 (61)

where the value of At is determined by a combination of stability and geo-
metric constraints which will be discussed later. The upper limit on the
time counter i is not generally known a priori, but it should be sufficiently

large that an asymptotic solution is attained.
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The. same values of JS and KS are used in all seven domains. The grid
columns j=2 and JS correspond to the axial boundaries m=m, and ﬁi+1' The
columns j=1 and JS+1 overlap into the adjacent domains and are used to patch

the solutions together. At the inlet station (which may be either m, or m2)

) 1
the grid column j=2 is composed of boundary points (to be discussed later) and
the column j=1 is unused. Correspondingly, at the discharge station (either

m.,, or m8) the grid column j=JS is composed of boundary points and the column

7

JS+1 is unused.

The grid rows k=4 and KS correspond to the circumferential boundaries of.

the blade-to-blade passage 6=6_ and eu. The grid rows k = 1,2 and 3 and

2
k = KS+1, KS+2 and KS+3 are exterior to the computational domain and are re-
served for the solution in portions of the adjacent blade-to-blade passages

given by:

(k=3) Av k =1,2 and 3 (62)

<
il

(k-5) Av k = KS+1, KS+2 and KS+3 (63)

<
1]

Thus, it can be seen in Figure (5) that the regws k=3 and 4 occupy the same lo-
cations on the transformed boundary v=0. The rows k = KS and KS+1 correspond-
ingly occupy the same boundary v=1. On the slipstreams these points also oc-
cupy the same physical locations. This convention was adopted in view of the
anticipated double-valued solutions which will pertain to each side of the
blade slipstreams which form the circumferential boundaries of domains 4, 6
and 7. On the blades, the row k=3 occupies a position corresponding to k=KS,

and 4 to KS+1, as indicated in Figure (5).

The finite-difference algorithm developed by MacCormack13 is employed to
carry out the solution at the interior grid points. This algorithm is based

on the following second-order approximation to the time derivative

p
= 1 (2= de
®i+t,ik - S5k v o7 (G G )

AT (64)
i+1,j,k i,j,k '

where the subscripts i,j,k refer to the discrete values of 1, o, and v de-

fined by Equations (59), (60) and (61), and the superscript p indicates a
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. "provisional" (or "predictor') value. The "provisional' values a

in a first or '"predictor' step:

e? =

oe
= + (= :
i+1,],k ®i,i.k 59 At

i,isk
Thus Equation (64) can be rewritten as:

P
P Je
e, . = = (e, , + ef . + (—= AT)
i+1,j,k 2 ( i,j,k i+1,7,k aT)i+1,j,k

which constitutes the second or '‘corrector' step.

it should be noted that the first or ‘predictor' step given !
(65) can be carried out consistently with the initial value chara:
interior point solution, i.e., it only involves the known values
and spatial derivatives thereof at time T, as given by Equation (:
the second or ‘''corrector' step, Equation (66), requires knowledge

ary point values at time T to complete the evaluation of the s

Ty
tives at the points adjace;t1to the boundaries at time Tigrr The
practice, the interior point solution cannot be completed by this
analogous two-step type algorithms without first completing the b
sofutions, which will be discussed subsequently. it will be show
boundary point algorithms used herein can be carried out entirely
the known solution at Ti and therefore, in fact, are executed pri

terior point algorithm.

The MacCormack algorithm achieves satisfactory stability wit
tion of artificial damping terms or numerical filtering procedurec
of first-order, non~centered finite~difference approximations to
derivatives which alternate direction between the first and secor
resulting solution is, however, considered to be second-order acc
space and time due to the combination of alternating direction di
13

in the second or '"'corrector'' step For exampie, on the '‘predic

spatial derivative may be approximated by:

£, - f
3f 1 i -
(<9 - _d,j,k i,j-1,k

3o Ac

1,k



Then on the corrector step.

: p _ P _ :
5P _ P T i, gk (67b)
90" . Ao :

must be used. The same procedure applies to the v derivatives. Since the
order in which the direction of the differences is evaluated is arbitrary,
it may be cyclically rotated to avoid imposing a preferential bias in the so-

lution. The rotation algorithm is illustrated in Table I. The central grid

TABLE |
ROTATION ALGORITHM FOR SPATIAL
DERIVATIVE EVALUATION
Time Step lterate o Derivative Indices v Derivative Indices

i 1 i1, ] k+1, k

i 2 js -1 k, k-1
i+1 1 j+1, J k, k-1
i+1 2 J, J-1 k+1, k
i+2 1 Jjs j-1 k, k-1
i+2 2 j¥1, | k+1, k
i+3 1 i, J-1 k+1, k
i+3 2 Jj*1, k, k-1

point is the j,k point in all cases; thus the circumferential position index
maintained in evaluation of the ¢ derivative is understood to be k, and the
streamwise position index maintained in evaluation of the v derivative is
understood to be j. Note that during any time step, combination of the first

and second iterates produces a time-split central difference, e.qg.:

P - £P -
1@k ety o D T T Bk g
2 3’ , . 30 . 4 - - 2Ac
i,k i+1,],k
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MacCormack]h has indicated that cyclic rotation shoujd eﬁhance the
stability of the system. However, in the authors experience it has also been
found to amplify numerical oscillations in the vicinity of a shock wave (i.e.,
pressure undershoots and overshoots). The latter phenomenon is not an in-
stability - in the usual numerical sense, but rather ampiification of oscilla-
tions associated with representation of a discontinuity by a continuous func-
tion. . For this reason, the option.to not use .the combinations .shown in Table
| for steps i+1, i+2.and i+3 has been retained in .the computer code, at-the

discretion of the user.

In reference to convergence and stability, the CFL criteria places an

upper limit on the permissible time step:

a (x.
. Ao o i+l
At < min [(u+a) x D

Sy (y -y.)
Gy vy, (ZouVely,

v+a L

The application of boundary conditions in the case of unequal numbers of blades

in the two blade rows (which will be discussed later) is based on a phase lag
in time. Implementation of the phase relations requires a constant value of
At; therefore an estimate of the maximum anticipated values of u+a and v+a
must be made to determine the allowable step size At. In addition, the value
mﬁst then be reduced such that the time for one blade of the second row to
cross a single passage of the first row is an integer number of time steps.
(The latter constraint obviously does not apply when only a single row is con-

sidered.)

Intet and Discharge Boundary Conditions

and Boundary Point Solution Algorithm

The present formulation assumes that the periodicity of the flow field
results entlre]y from the lnteractlon of the rotor and stator blade rows. Ac~-
cordung]y, a&y nonunlformlty, elther spatlal or tlmeW|se, of the properties
of the flow crossing the inlet or discharge statloﬁ attributable to inward

travelling waves or inward convection must be ruled out, since its existence

. would add unsteady components to the flow which are not accounted for by the

. blade row interaction model. lIdentification of the flow properties which

propagate by convection and by wave motion is facilitated by recasting the
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system of equations in characteristic form.

The characteristic surfaces formed by the hyperbolic system of partiatl
differential equations given by Equations (27) through (30) consist of a conoid
with its base on the x,y plane and within it a stream path which intersects the
conoid at its vertex. |If the vertex is placed at a grid point at time t+At,
the base covers the domain of dependence of the point at time t. A particularly
useful approximation to the true characteristic form is obtained by stating
the system of equations in a reference plane coordinate system which reduces
the problem to a more tractable two-dimensional (i.e., time and distance) form.
If the reference plane is normal to both the x,y plane (t=constant) and the in-
let station {x=constant) and is allowed to translate in the y direction at the
same velocity as the circumferential component of gas velocity, v, then (as
will be shown) the system of characteristic lines illustrated in Figure (6) is
obtained. The lines A0 and CO approximate the intersection of the reference
plane and the true characteristic conoid, and can be interpreted as paths of
downstream and upstream travelling waves. The line B0 is the stream path,

which also lies in the reference plane.

It is also pointed out parenthetically that translation of the reference
plane at the velocity v in effect transforms a rotating frame of reference
back to an absolute frame. Thus, the inlet and discharge station solutions
are effectively carried out in an absolute frame regardless of the relative
motion of the computational domains, and the numerical results are entirely

independent of this transformation.

Those characteristic lines which originate outside the computational do-
main at time t and intersect a boundary point at time t+At each represent at
least one equation which must be replaced by a boundary condition to render a
determinate solution at the boundary point. Obviously, a subsonic axial Mach
number, i.e., (u-a) < 0, has been assumed in the construction of line CO in
Figure (6). Should the axial Mach number at the inlet be supersonic, all
characteristics would originate outside the computational domain, and accord-
ingly the complete solution at this boundary could be specified as a boundary
condition. Correspondingly, a supersonic axial Mach number at the discharge

station would imply that no characteristics originate outside the computational
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domain and, therefore, no boundary condition can be specified. The preséent
analysis is formﬁlated with respect tQ'subsonic axial Mach_numbérs, but con- -
sideration of supérsoﬁic axial flow clearly requfres bnly a -minor yariatibn. B
of the solution algorithm. In this case, specification of three (3) boundéry
conditions at the inlet will be required (one to replace the wave motion char-
actéristic A0 and two to replace stream path characteristics on BO). At the
discharge station one (1) boundary condition will be required to repliace the
wave motion characteristic on CO. Derivation and discussion of the character-

istic relations and boundary point solution algorithms follows.

(a) Stream Path Characteristics - The energy equation as given by Equa-

tion (11) is already in characteristic form; it can be integrated to yield
(in terms of the two-dimensional system given by Equations 20 to 24):
dx dy

S = constant on - = 7 - dt (70)
Equation (70) states the well known fact that in unsteady flows entropy is
convected on stream paths. It is evident that the entropy convects inward
(assuming u > 0) across the inlet station and outward across the discharge
station. The condition S = constant everywhere upstream of the inlet station

forms the first boundary condition to be applied at the intet.”

The momentum equation, Equation (2), can be rewritten in terms of the gra-

dients of total enthalpy and entropy rather than pressure:

(s %]
<t

= - VH + V x Vv x V + TvS (71)

QU
+

If V§ = 0, as at the inlet, then the curl of Equation (71) gives the vorticity

transport equation:

=
dw

=+ WX (wxV) - 0 o - ) - (72).

*The value of the entropy at the inlet could, of course, be increased by upstream
travelling shock waves. However, it is assumed that any shock waves reaching
the inlet station are sufficiently weak to be considered isentropic.
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- >
where the vorticity vector is defined by w = VxV.

Equafion (72) can be expanded and combined with the continuity equation,

Equation (1), to obtain:

1€+
olEY

. R . . _ |
T3 (=) = vV - (73)

kel

In terms of the presently considered two-dimensional sysfem given by Equations
(20) through (24), the only non-zero component of vorticity is the normal com-

ponent ¢ = (3v/3ax - du/dy). Accordingly, Equation (73) reduces- to:

r. @ =0 . (74)

or

[a
o
x

= constant on = = %}- = dt (75)

Thus, it can be seen that the ratio of vorticity to density also convects on

stream paths. The condition £ = 0 upstream of the inlet station is taken as

the second boundary condition to be applied at the inlet station.
To summarize, Equations (70) through (75) apply on the stream path char-
acteristic, line BO in Figure (6), and have been replaced by the boundary con-

dition S = constant and ¢ = 0.

(b) Wave Motion Characteristics - The equation of state, Equation (12) can

be differentiated with respect to time using the convective operator:

bp _ xy Dp DS
t o

1 1
v

~ey - . ] PR .

*In“the present context this result is restricted to conditions for which
98/3y = 0, e.g., at the inlet station. It can also be proven for barotropic
and constant density fluids. ’
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The continuity equation, Equation (27), and the energy equation, Equation (30b),.

¢an be substituted into the above relation, and the streamwise momentum equation, .

‘Equation (28b), then added to and subtracted from the result to obtain:

a2  op P Py, oy +g) 24 4, 3u
7o e t o (uwa) g2 o+ vl o+ oy (ura) 32 vV 3y
- v u drb 2 1 dr
= (55 5 oo * (v ax
or
a dp , du _ _ dx _ dy _
yp dt * dt an * QZ on uta v de

where Q] and Q2 are identified as the terms appearing on the right hand side of
Equation (77). Equation (78) applies on the characteristic lines originating
at points A and C at time t which intersect the boundary point 0 at time t+At
in Figure (6). The set of equations represented by Equation (78) are commoniy

referred to as the compatibility relations. The member of the set with the +

sign applies on the line A0 at the inlet and will be replaced by an inlet bcundary

condition. The member of the set with the - sign applies on the line CO at the
discharge station and will also be replaced by a boundary condition. Applica-
tion of the compatibility relations on line CO at the inlet station and line AD
at the discharge station to complete the boundary point solution algorithms

will also be outlined below.

(c) Modelling of Duct Boundary Conditions - As indicated above in connec~

tion with the stream path description, it is assumed that S = 0 and ¢ = 0 at
the inlet. These conditions derive from the convective character of Equations
(70) and (75) and are independent of the physical structure of the iniet duct.
On the other hand, the propagation of waves across the iniet or discharge sta-
tion is dependent on the configration of the duct, as is well known from
acoustic theory which ascribes impedance functions to the geometric and ma-
terial propérties of the duct. (Since the present model neglects the radial--
velocity component, radial wave modes and wall impedance properties are cor-

respondingly assumed to be absent.)

Two limiting cases have been considered to be descriptive of the duct con-
figuration at the inlet or discharge station. One case is an infinite duct,

i.e., the inlet or discharge station is located in a region of constant cross-
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sectional area which extends ''very far'' outward from the inlet or discharge sta-
tion:. Consequently, all outward radiating waves should pass the inlet or dis-"-
charge station without refiectibn in this case, and continue travelling outward
“forever' on the time scale of the problem. No reflected waves from x - + ®

should ever reach the computational domain.

The second case represents the opposite limit in which all pressure waves
are reflected at the inlet or discharge station; this case is termed an open-
end duct since it corresponds to the type of reflection associated with the
open-end of an organ pipe. The boundary condition is that the pressure matches

the plenum pressure outside the duct, namely:

(v,t) = p__

pinlet

(v,t) = p,

pdischarge

where the subscripts +~ denote x>x and X<xe respectively.

discharge let

Modelling of the non~reflective condition for an infinite duct is some-
what more complex, particularly in regard to the swirling waves produced by a
rotor-stator interaction. A precise mathematical formulation of the flow field
solution upstream of the inlet station and downstream of the discharge station
based on a small-perturbation analysis is described in Volume 111 of this report
and is herein referred to as the acoustic far-field model for an infinite duct.
it accomplishes the desired objective of allowing an arbitrary transient signal
to radiate outward without reflection and asymptotic attainment of a periodic
solution with as many harmonic components as can be derived from the mumber of
grid points spanning the considered boundaries. However, an approximate model
of the infinite duct condition has also been developed which does not require
use of the acoustic far-field analysis.. In the approximate model, the infinite
duct conditions are derived from the wave-motion characteristics represented
by Equation (78). Consequenf]y, the discrete acoustic modes are not explicitly
identified in the approximate model, and their unimpeded transmission across
the boundary cannot be guaranteed. In the approximate infinite duct model,

Equation (78) is integrated to yield:
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%%— i. u = JH('-aQ1 i.Qz) dt + constant :
(81)
on X - Iy _ 44
uta v
where S = constant along the wave path is assumed. Outside the computational
domain r = constant and b = constant is assumed. The remaining term in the
integrand of Equation (81), namely a 3v/3y, accounts for the two-dimensionality
of the actual wave surfaces, as compared to the one-dimensional (helical) sur-
faces which would result if the swirl component of velocity, v, were constant
or only a function of x. |If 3v/3y is neglected outside the computational domain,
then the well-known Riemann invariants for the incoming waves are obtained from
Equation (81):
2a
2a (y,t) - ~e
(=== touv,t)) et v L (82)
2a
2a (y,t) _ - ° .
( v-1 u (y’t))discharge v-1 Yo (83)
In this case the subscripts denote the specified values for x » + =, i.e., the
"ends' of the infinite duct. The two-dimensionality of the outward radiating
waves at the inlet or discharge station is retained by evaluating the inte-
grand of Equation (81) numerically:
t+At
2a 2a
= + = (== + + - +
7 fou -1 * u), S (-aq, +0,) dt (84)
c
t
where:
x, = x - (uip)a At (85)
¢ c

Some distortion of the swirling waves at the inlet and discharge bound-
aries can be expected to result from the above model of infinite duct boundary
conditions, due to the representation of the incoming waves by the Riemann
invariants for a one-dimensional unsteady flow. The severity of the distortion
will depend on the relative strengths of the two wave systems and, therefore,
should not be serious since the outgoing waves (which produce the swirl) are

described by a two-dimensional system of equations. In no event should this
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model generate the standing waves associated with an open duct condition, but
neither can it be expected to duplicate the perfect wave transmission of the
acoustic far-field model described in Volume ||l of this report. Therefore,
the approximate infinite duct boundary conditions are considered to offer a
useful analytical tool for analysis of the aerodynamic performance of inter-
acting blade rows without invoking the additional computational complexity of

the acoustic far-field analysis.

(d) Circumferential Velocfty Solution - The determination of the swirl

component'of velocity'at the boundary points at time t+At can be accomplished

by use of the circumferential component of Equation {(71):

v oH 9S N
—_— = - — + — -
t 3y T 3y ue
Equation (86) pertains to the flow normal to the reference plane in which the
wave paths have been identified above. Thus, the swirl component of velocity
does not exhibit a wave-like behavior in this formulation. Furthermore, Equa-

tion (86) does not involve any streamwise gradients (if ¢ is known) and can,

(86)

therefore, be evaluated along the inlet or discharge boundary by the same finite

difference algorithm employed at the interior points. The swirl component of
velocity is, of course, implicitly coupled to the axial component and to the

pressure through the gradient of total enthalpy H /3y (even when § = ¢ = 0).

(e) Inlet Solution Algorithm - The inlet solution algorithm consists of

the stated boundary conditions, namely: S_, = constant, t_. = 0, and either

p_, = constant (open duct) or 2a__/(y-1) + u__ = constant (infinite duct), to-
gether with the compatibility equation on the upstream wave, line CO in Figure
(6), given by Equation (78) and the circumferential momentum equation given by

Equation (86). (This combination of 3 boundary conditions and 2 equations may

appear redundant since there are only 4 dependent variables, however, the condi-

SELEt

tion C: =0'is a Nehmannltype boundary condition which only serves to allow

co

solution of Equation (86) without knowledge of streamwise derivatives.)

The boundary condition S_, = constant is enforced by requiring that two
thermodynamic properties of the inlet flow which define the entropy be speci-
fied, e.qg., S . = CV log (p_m/kpzm) = constant. Since the open duct condition

requires specification of P and the infinite duct condition requires a__,
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these two variables have been selected to define S__ = 0 and, therefore, k =

(a2 p-(Y-l)/Y Y-])Y, in both cases.

-00 -0

The solution algorithms for the open duct and for the infinite duct inlets

are summarized as follows:

(1) Open-End Inlet Duct - The values of a__ and p._ are specified, and

S =¢_, =0 is implied. this combination provides the values of p,p and e

-0 -

at the inlet:

P = p__ (87)
o = yp/a_ (88)
e = p/{(y-1)p) (89)

The axial velocity is obtained from the integrated form of the compatibiiity

relation, Equation (84), on the upstream travelling wave:

2(a—ac)
= +
u uo F NN (aQ] + Qz)c At (90)
where the characteristic point X Yo is located relative to the boundary point
X,y from:
x. = x - (u-a) ot (91a)
P A R (91b)

and the local sound speed 7s given by
2
a~ = vyp/p (92)

The circumferential velocity component is obtained from finite-difference so-

lution of Equation (86), using S .= t_,=0:

v o 3H
oy 2 (93)
(2) Infinite Duct Inlet - The values of a__, p_, and u__ are specified,
and S_Oo =T__ = 0 is implied. In this case, the internal energy is obtained
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from the speed of sound, using the compatibility relation (Equation (84))
on the upstream wave:
2
! y-1 -u - at) | /(v (y-1))
e = [ 5-(ac+a_w) + A (o mug (aQ, + QZ)C )] (v (v
The axial velocity component is obtained from Equation (82):

= 2 -a)
U= T (a_-a) + u

The pressure and density are given by:

2y
y-1
= _a
P = p_, (a_m)
- XYP
PE T3
a

The circumferential velocity component is again obtained from Equation (93).

(9h)

(95)

(96)

(97)

The pressure is a redundant member of the set of dependent variables, since

it can always be obtained from the density and internal energy, i.e., p = {y-1)pe;

however, it is carried in the above presentation of the inlet solution statemen

for clarity.

The point xc, Y. is located by iteration, using linear interpolation to
determine the flow properties at the point. A change in position of 0.1% s
used as the convergence criterion. In principle, the terms multiplied by At
in Equations (90), (91a), (91b) and (94) should be replaced by the average of
the values at point C and the new values at point 0; however, examination of
the solution a posteriori indicates that the numerical error involved is too

small to warrant the additional computational complexity.

(f) Discharge Station Solution Algorithm - The considerations pertaining

to formulation and statement of the discharge station boundary conditions and
solution algorithms are similar to those outlined above. However, as indicated
in Figure (6), points A and B originate within the computational domain, and

point C falls outside. Therefore, the compatibility relation pertaining to
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point C is replaced by a boundary condition given by either Equation (80) or
(83). Equation (70) is evaluated on the stream path B in this case, using

linear interpolation. The discharge station boundary conditions and solution

algorithm are summarized by:

(1) - Open-End Discharge Duct - Value of p_ is specified.

P = p_ (98)
- 1/y
P ey (p/py) (99)
e = p/({y-1)p) (100)
- - L (a-a)) + (-aQ, + (101)
u Ua v-1 a aQ] QZ) At
a
(2) Infinite Discharge Duct - Values of a_ and u_ are specified.
1 y-1 2
e = [E- (aa + am)+ - (ua-uoo+ (-aQ] + QZ)aAt)J /{y(y-1)) (102)
u = 2 (a-a) + u (103)
-Y-‘I -] [
YPb
Dba
2
p = vyp/a (105)
In both cases, the circumferential velocity component is given by:
av _ 3H E _ . TR
3t 5y T Tay T (7106)
and the characteristic point X s Yy, is located with respect to the discharge
boundary point x,y from:
X, = x - (ua + aa) At (107)
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y, = Y - v/t ' (108)
Equations (99) and (104) utilize Equation (70), i.e., S = S, Solution of
Equation (106) is carried out using a first order upstream difference (i.e.,

j, j-1) to evaluate the o derivatives necessary to compute ¢ at the boundary

points.

Blade Surface and Slipstream Boundary

Conditions and Solution Algorithm

(a) Blade Surface Boundary Conditions - The boupdary condition at the

blade surface is simply impermeability of the surface, which requires that the
component of velocity normal to the surface vanish. The blades are assumed to
be thin and have sharp leading and trailing edges, as is typical of high speed
compressor and fan blades. Therefore, the Kutta condition which requires the
pressure to be continuous and finite at the trailing edge, is applicable. This
also implies that the slipstream (i.e., vortex sheet) which emanates from the
blade must originate at the trailing edge. Since the blade leading edge is
sharp, and the incidence angles are not expected to be large, the streamline
which wets the blade surface is assumed to intersect the leading edge. Accord-

ingly, the leading edge pressure is also required to be finite, but not continuous.

{b) Slipstream Boundary Conditions - The boundary conditions pertaining

to the slipstream are similar to those for the blade surface in that the slip-
stream is impermeable, but are dissimilar in that the slipstream is non-rigid.
It can be shown from application of the conservation form of the governing equa-
tions at an impermeable contact surface that the pressure must be continuous
across the slipstream, and that the component of velocity normal to the s]ib—
stream surface must also be continuous and equal to the surface velocity.

“ {Thus, in a frame of reference moving with the surface the normal component of
velocity must vanish at the surface.) However, the tangential component of
velocity may be discontinuous across the slipstream, as well as the density or
other thermodynamic properties. These jumps (discontinuities) in flow proper-
ties result from unsteady variations in the work performed by the blades, or by
differences in shock-produced losses on either side of the blade under steady

conditions, for example. It is emphasized that the conservation form of the
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equations admit the existence of these jumps across a slipstream, but their
magnitudes are not derivable from application of the conservation form of the
governing equations to a surface of discontinuity. By contrast, the magﬁitude
of the jumps across a shock wave derive from the Rankine-Hugoniot relations.
Therefore, the slipstreams cannot be expgcted to evolve from a finite difference
solution of the governing equations in the same way that shock surfaces are
"captured’'. Consequently, if the slipstream jumps and the corresponding slip-
stream motion are to be resolved accurately, the slipstreams must be explicitly

recognized as surfaces of discontinuity, as they are in the present formulation.

(c) Restatement of Governing Equations - The solution algorithms used at

the blade surface and slipstréam points are closely related and, therefore, will be
derived for the more general case of the slipstream points. The result will then

be specialized to the blade surface points and the leading and trailing edge points.

A surface-oriented coordinate system (x,y,t), as sketched in Figure (7),

is defined by:

. 5 ) .

_d__ = Cosq) —_— - S|n¢ i (1"09)
9x A= -
IxX ay

ﬁi- = s5in¢ i%- + cos¢ jg (110)
Y ax dy

where x is the curvilinear distance along the surface, ; is the distance nor-
mal to the surface, and ¢ is the angle between x and x. The velocity com-

ponents in this system (u,v) are correspondingly defined by:

c
It

ucos¢ - .vsind (111)

usind. + vcosd . . . (112)

<
fl

In this system, Equations (27), (28b), (29b) and (30b) become:

;—,£+(,[a_u+.3_ll_+l]

Q.
=
o

— B—LI——
rb

(113)

[«
X

ax 3y ax 3y R
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BV -8~ v, -av _u- .1 1 d | _
Tt Uzt U+ Y e - g 22 L CT
ot T-Y 3t < VW TR TS 2y T ax (u(v+29f) cosé
2 .
+-(v+ar)“ sing) : : (114)
0 _ =20, -3 -du.uv, 1 dp_ 1 .dr, o |
—_— - = & = = == ~ 2= - - Z . H
5t Va3 v U = + v ™ + 3t 5 i - .a;-(u(v+29r) sing
,
- (v+ar)” coso) ‘ (115)
35 - 3S - 23S
—tu—+v-—==20
ot % 3y (116)

where

=
1
|
1
ol
x]

(117)

Combination of Equations (113) and (116) and the equation of state yields:

1 38p .4 3p,v 3 v U . v u drb
— + = E o+ - =+ —_— = - — = —_— :
P 3t P 3x P 3y oy YEEYR YT o) (118)

Equations (114) and (118) can then be combined to obtain a pair of compati-
bility relations analogous to those previously discussed in connection with

the inlet and discharge boundaries:

N _ -
2 (2B (vra) 24 52y 4 (Y, (Jea) W4 RV
Yp ot - 3 -
ay X ay ax
- -2
- du . v u drb u = 3¢ _ 1 dr
a (a; txt b H;—J (7;" Vst T 7 ax (u(v+20r) cos¢ {119)
2 .
+ (v+ar)© sing))
or
a dp dv - dx di '
2 B2y =L = - a0, + on — == = dt (120)
yp dt —dt Q —QZ, _ u v+ : . R

The variables Q1and Q2 are defined by identifying the right hand side of Equa-
tion (120) term by term with the right hand side of Equation (119).

Implementation of the numerical solution of Equation (120) is facilitated
by introduction of an additional coordinate transformation from the curvi-
linear (x,y) system to a series of local Cartesian systems (£,n) each of which

is tangent to a grid point on the slipstream (or blade surface). The (&,n)

€



system is shown schematically in Figure (7). Note that in the (£,n) system,

R71 = 34/3t = 0. The velocity components (u,v) at the grid point at which
the local (£,n) system is defined are unchanged by this transformation; how-

ever, their values at adjacent grid points must be evaluated with respect to
the angle ¢ at the subject grid point. The overall effect of these transforma-
tions is to make evaluation of Equation_(120)_closeTyvapproximate impingement
of a one-dimensional acoustic wave on a Surface which'is mdving at a velocity
v. Although all two-dimensional tefmé are in fact rétained{'they can be viewed

as 'corrections'' to a more familiar one-dimensional solution.

The boundary point algorithm is completed by stating the streamwise momentum
equation and the energy equation in the curvilinear (x,y) system which follows
a stream path along the moving surface. The magnitude of the velocity vector

along the surface is:

= (u + v) | (121)

Faly|

The streamwise momentum equation is obtained by multiplying Equations (114)

by v and (115) by u and adding:

- 2
g _ _ 1 3 , u(ar) dr (122)
Dt P 5z gr dx
where
Do, 2 v Aoy g A (123)
Dt ot - - ot z
ax Yy as

Equation (116) integrates exactly to:

a.
o

S = constant on -{i = f;- - Yy
q u

-4 = dt (124)
v )
Equation (122) is not an exact integral, and, in contrast to the compatibility
relations, i.e., Equation (120), the integrénd onlthé'rightlhand side of Equa-

tion (122) includes a leading term (the pressure gradient) which cannot be
adeqpétely approximated by its initial value on the path of integration. Note,
however, that Equation (30a) represents a combination of the momentum and enérgy
equations; therefore since Equation (30b) has been used to represent conserva-

tion of energy, Equation (30a) can be used to represent conservation of momentum

in lieu of Equation (122). Either form should be equivalent, but it will be
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seen below that Equation (30a) offers an advantageous form for numerical

evaluation. Equations (27) and (30a) can be combined to yield:

3 (125)

i (126)
where the convective derivative is defined above by Equation (123). In most
applications for unsteady flows, Equation (126) is awkward to evaluate because

the time derivative of pressure is not known a priori. However, in the pre-

sent formulation, the pressure at time t1 (point 0 in Figure 7) is determined

from the solution of Equation (120), which is uncoupled from Equation (126)

and, therefore, can be evaluated prior to (126). Thus, the term in question

can be accurately approximated by:

2 (po-pq)

1T 3p _
> 3t - To o) ot (127)

Accordingly, Equation (126) integrates to:

. 2 (p-p )
H = constant + 9
(po+pj
4 (128)
q u v

The constants indicated in Equations (124) and (128) are determined by
evaluating S and H’, respectively, at a distance As = a At upstream of the point.
0 (in Figure 7). Although neither Equations (126) or (122) are exact integrals,
as is Equation (124), the time derivative of pressure along tine 00 (in Figure
7) can be more accurately represented than its spatial derivative at point
B or E (which must be interpolated). Numerical experimentation has shown

that integration of Equation (126) yields correspondingly more accurate re-
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sults than integration of Equation (122).

(d) Blade Surface Solution Algorithm - Equations (120), (124) and (128)

constitute the system of governing equations as applied on the blade surface
and slipstream points. Therefore, with reference to the geometry indicated in
Figure (7), and reverting to the subscripts £ and u to denote lower and upper

boundary surfaces, respectively, the solution at a blade surface point 0 is given

by:
v, = \'/u = 0 _ (129)
log p, = log p, - —ala- (v + (aq, + Q,)at), (130a)
1
S, = S, or 0, = o (pl/pb) 2t (131a)
- - /Y
S, = Se or o, 0y (pu/pe) (131b)
- - 2 (PQ"PQq)
H}Z, = Hb + -Z—-————j——'pg_'_pz' (1323)
q
T o= (2 (W - F)i)+ o? 2)% 132
u, = g o 5 r (132b)
2 (pu-pU )
°L - q
HU = He + W (132C)
q
RN R ST G LI :
lt u 1 0o, r (132d)

Determination of the total internal energy follows from the total enthalpy,

pressure and density by definition, c.f. Equation (26).

(e) Slipstream Solution Algorithm - The solution at a slipstream point

is given by:
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log p,=log p =log p =

The overall procedure for imposing the boundary conditions along the blade
surface and slipstream points is shown schematically in Figure (8). The time
axis projects vertically out of the page in this figure.
present the intersections of the reference planes and of the stream path with

the axisymmetric stream surface (i.e., the x,y plane) during a time step At

ho

a_log p_*a,log Pd'Y(Va'Vd)'Y((aQ1+Q2)a+(aQ]‘QZ) At

d
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a_~a a a
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- 1/y
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(neglecting the motion of the slipstream during the interval At). The values
obtained for v on the slipstream are used to locate the new position of the

slipstream for the next time step as follows:

X o= X - (vsing) At , (138)

Yy = Yo *+ (vcos¢) at | (139)
where (xo, Y, (xo,t)) are the coordinates of the slipstream point at which

the above described solution is obtained, and (xn, yn) are its new coordinates.
Linear interpolation is then used to find the new y coordinate, y_ (xo, t+AL)

of the intersection of the slipstream and the grid column located at X=X which

gives the new coordinates of the slipstream grid point at the next time step.

(f) Trailing Edge and Leading Edge Points - At the trailing edge, the

system given by Equations {(129) through (132) is applicable subject to the
constraint that Pe=Py- This condition is satisfied by iterating the angle ¢

at the trailing edge, which, unlike the general blade surface and slipstream
points, is not known a priori. The blade trailing edge is assumed to be sharp,
but not necessarily cusped; the angle ¢ is taken as a weighted combination of
the blade surface angle and the slipstream angle, as shown schematically at

points A and B in Figure (9a).

¢TE - kTE¢slipstream * (]_kTE) d)surface (140)
(Values of kTE in the range %'f-kTE 5_%—have been found to provide satisfactory
accuracy and stability of the trailing edge point solutions.) Therefore, the
trailing edge point solution is carried out at points A and B lTike any other

blade surface point solution, except that the slipstream angle is deflected

until equal pressures (to within an error tolerance of 0.0001% of the mean
pressure) are obtained on each side of the surface. The trailing edge and the
slipstream emanating from it thus can be considered as together forming a con-~
tinuous deformable surface. Note, however, that one value of ¢TE will be ob-
tained on the upper surface of the blade and & second value on the lower sur-

face, if the trailing edge itself is not actually cusped. Therefore, the direc-
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tion of the velocity vector at the trailing edge is multiple-valued. Spe-
cifically, 5 values of the flow angle are identified at 6 points having a
common location; the trailing edge §urface angles at points E and F, the
mean angles at points A and B, and the (single) slipstream angle at points

C and D. Since the Kutta condition requires the pressure to be continuous
at the trailing edge, the change in pressure associated with the angular dif-
ferences Between these 6 points is neglected. Therefore, the solution is

- carried out at point A as indicated above, and then solutions are defined

at points D and E which only differ from that obtained at point A in the
direction assigned to the velocity vector. (i.e., the pressure, density and
magni tude of the velocity vector at points A, D and E are equal. The direc-
tions of the velocity vectors are parallel to the angle of each of these 3
points.) The same procedure is used to carry out the solutions at points B,
C and F. Note that velocity vectors obtained at points C and D are, there-
fore, parallel but can differ in magnitude. The solutions at points A énd B
are used in the computations at interior points directly above and below the
trailing edge, whereas the solutions at C and D are used to determine the
slipstream point solutions downstream of the trailing edge, and those at
points E and F are used to carry out solutions at the blade surface points

upstream of the trailing edge.

The leading edge configuration is sketched in Figure (9b). In view of
the singular character of a sharp leading edge, a somewhat more complex solu-
tion procedure than employed at the trailing edge is necessary. A total of
five flow angles, and a corresponding number of solutions, are again identi-
fied at the leading edge. With reference to Figure (9b), the points A, B, C,
D and E are all located at the same physical position, however, the flow angle
at point A is the angle of the stream path intersecting the leading edge, and
the flow angles at points B and C are a weighted combination of the surface
angles of the upper and lower surfaces, respectively, and the stream path
angle:

= k $ {(141)

®Le LE (1-ky ) ¢

surface stream path

(A value of kLE = 1.0, which makes the flow angles at points B and C tangent

to the actual blade surface angles, has been found to be satisfactory for very
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slender blades, but k, _<1.0 may be appropriate for other cases).  The flow angles

LE

at points D and E are the mean of ¢LE and ¢stream sath

The leading edge soletion procedure is begun by varying.the stream path angle
until the pressures at point A obtained from Equatidn (130a) and (130b) are
matched (to within an error tolerance of 0.0001% of the mean pressure). As part
of this step, the instantaneous locations of the origins of the stream path and
the wave characteristics intersecting the leadlng edge are determined The solu-
tion at point A is then completed using Equatlons (129), (131) and (132) in the
same fashion as employed at any blade surface point. Note that a S|ngle valued’
solution will be obtained at point A. Next, pressures at points B and C are
obtained from Equations (130a) and (I30b) using the specified angles at these
points'(from Equation 141). Since points B and C are, in fact, coincident with
point A, the solutions must have the same entroples at any instant. The total en-
thalpies are determined from Equations (132a) and (132c). Therefore, the
densities and velocities at these points are found from the equation of state,
the definition of total enthalpy and the specified angles. Finally, solutions

at points D and E are obtained by averaging the pressure and magnltudes of the
velocity vectors at points A and B and at points A and C, respectively. The
directions of the velocity vectors are also averaged. The densities at these

points are then calculated from the entropy at point A.

Summarizing, at the leading edge a single value of the entropy and total enthalpy
is obtained, but five values of the pressure, density and velocity vector are
determined. The solution obtained at point A in Figure (9b) is subsequently

used in computations at the interior grid point upstream of point A. The
solutions at points B and C are used for the adjacent blade surface points on

the upper and lower surfaces, respectively. The solution at point D is used in
computations at the interior point above the leading edge, and that at p0|nt E

for the interior point below the leading edge.

*The possible existence of a shock wave at this point due to the flow deflection
is neglected in this connection. The oblique shock entropy increase could, of
course, be computed, if appropriate, by suitable modification of the code.
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(g) Intersection of Slipstream and Discharge Boundary - Finally, special

consideration must be given to the grid points at the intersections of the slip-
streams and the discharge boundary, since these grid points lie on two boundaries
of the computational domain. It should be emphasized in regard to these points
that all the characteristic points (A, B, D and E in Figure 7) which influence

a slipstream point (0 in Figure 7) lie upstream of the subject point (assuming

u > 0). The numerical domain of dependence of a slipstream point, therefore,
extends to the adjacent grid points only through the linear interpolations
necessary to evaluate variables and derivatives at the characteristic points.
This dependence represents the only mechanism by which those slipstream points
which lie on the discharge boundary are affected by the discharge boundary con-

ditions that are explicitly enforced at all other discharge boundary points.

In connection with these same special slipstream points, it should be
pointed out that if the slipstream angle ¢ at the discharge boundary becomes
sufficiently. large (i.e., the included angle between the slipstream and dis-
charge boundary is sufficiently acute) it is possible for the characteristic
point to be located outside the computational domain. The physical meaning
of this occurrence is that the slipstream solution explicitly depends on data
downstream of the discharge boundary and, therefore, the boundaries of the
computational domain do not encompass the numerical domain of dependence of
the solution. Theoretically, this condition represents a limitation on the
applicability of the present formulation. In practice, it represents an ex-
treme condition which has thus far only been encountered during transient
phases of a solution; use of linear extrapolation of data from the set of
grid points adjacent to the discharge boundary to the characteristic point has
pféven successful in these instances, although it temporarily violates the CFL

convergence criterion.
Periodicity Condition

In the analysis of an isolated circular (or infinite) cascade of blades
in a uniform free stream, it is clear that the solution for each blade-to-
blade passage will be identical. The solution for the complete cascade in this
case will be steady (in the frame of reference of the blades) and have an

angular period of 2n/N. Enforcement of this periodicity condition is straight-
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forward; the solution on the exterior grid rows k=1, 2 and 3 (see Figure 5)

can be equated to those on interior grid rows KS$S-2, KS-1 and KS, and those on

h
12

a annata
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+ta thnca on ntar
LU LniuscT Ui [ AR

~ 2 ~Aan Ar roauagc
< J Laii i 1 UV D
k=4, 5 and 6. It may be noted that in domains 1 and 2, grid rows 1 and 3

and KS+1 and KS+3 are superfluous, since the lateral boundaries of these do-
mains are in reality composed of ordinary interior points. However, the so-

lutions on grid rows 1, 2 and 3 and KS+1, KS+2 and KS+3 are required to carry

ct
3
3
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out the slipstrea int solu ns 4, 6 and 7 as well the blad
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o>

eading and trailing edge point solutions. (Compare Figures 5 and 8.) -

In the more general case of a stage composed of interacting blade rows
having unequal numbers of blades, the fundamental angular period of the com-
plete cascade solution is 2n/AN, where AN is the difference in the number of
blades. Furthermore, the flow pattern rotates with an angular velocity which
is, in general, a multiple of the wheel speed.11 (In the special case of an
equal number of blades the flow pattern rotates at "'infinite'" speed and the
angular period 2a/N is reccverad.) Numerical representation of the periodicity
condition pertaining to the conventional configuration, consisting of a pair
of blade rows with the larger number of blades in the second row, has been ac-
complished by formulation of a cyclic procedure for equating the solution on
the exterior grid rows identified above (i.e., k=1, 2, 3 and KS+1, KS+2, KS+3)
to that on corresponding interior rows (i.e., k=KS-2, KS-1, KS and 4, 5, 6) at
an earlier time through a set of appropriate phase relations. The same pro-

cedure is applied on the grid columns at the interface between domains 4 and 5.

An illustration of the nature of the cyclic procedure devised to enforce
the periodicity of the solution can be accomplished through use of the following
simplified configuration. Consider first a stage having three rotor blades and
three stator blades. For the present discussion, let the stator precede the
rotor. This configuration is shown in Figure (10a) in both axial and cascade
projections. At time t0 all rotor and stator blades are aligned, whereas at
time to+At the rotor has moved through a fraction of a revolution, and none
of the blades are now aligned. It is clear in this case that the geometric
boundary conditions (which determine the angular periodicity of the flow through
the stage) are identical in each blade-to-blade passage at any time. Accordingly,

the flow field in each passage should be identical, since none of the boundary

L7



(€=23N‘c="N) 401CH ONV ¥OLVLIS NI S3av78
.._O mum_z:Z TYND3 HLIM 39VLS H04 WHLIHO9TV JITOAD 40 NOILYY1SNTTl 0Ol 34N9OId

w+%=14(Q) Oy~4 (D)
2
9 q ¢ 2'q
¢ M3IA TVLNOYA
D ! ‘D
| | ¢
¢ r N L7 &Vv/_ UG
.llb_ _ ~
_ _
| o _———
! b Prammn\ D
] DT_ O~ =———¢ I o~—————y
| | | NOILD3r0Nd
| | elalviels) o)
. L ————A N\I/_ —_——-—
2 Dﬂ_ G ————23 | a——————z¢
|
| |
_
¢ 77zl
_IANN“ L7



conditions distinguish one passage from the next. In this case the solution
along an exterior grid row § can be equated to that along the interior grid
line B and similarly that along exterior line a can be equated to that along
interior line y, at any instant. Consider now the case with three blades in
the stator and four blades in the rotor as shown in Figure (10b). At time t0
rotor blade 2 is aligned with stator blade b, whereas at time to+At rotor blade
3 is aligned with blade c. In this case the geometric conditions pertaining to
the passage between blades a and b are obviously different from those for the
passage between blades b and ¢ at any time. However, it may be noted that
those pertaining to passage bc at to+At are precisely the same as those which
pertained to passage ab at the previous time to. Therefore, the flow condi-
tions along exterior grid line § at time to+At can be equated to those along
interior grid line 8 at the earlier time to. However, in this case those along
exterior grid line o at time to+At cannot be equated to those occurring in pas-
sage ab at time to’ but must be equated to those occurring along line y at an
earlier time. Thus, a phase shift is introduced in application of the lateral

boundary conditions.

A similar procedure is used to define boundary values along the interface
between domains 4 and 5. However, in this connection it is pointed out that
sufficient data must be stored along this interface to provide information for
a maximum period corresponding to the blade passing frequency of the first row
(i.e., the row with the smaller number of blades). During this period the
relative angular positions of the two domains will shift by 2ﬂ/N1. In addition,
domain 4 will itself span an arc of 2W/N1; therefore data covering a total arc
of 2(2n/N1) must be available. The boundary data is stored for one blade-~to-
blade passage on either side of the central passage which forms the computational
domain, i.e., a total of three passages. Thus, for domain 5 the stored data
spans the arc 3(2ﬂ/N2). An upper limit on the ratio of number of blades re-
sults, namely: 3/N2 z_Z/N] is required. The permissible number of blades in

the second row is, therefore, bounded by:

N

2
1T < — <
—-N]—

(142)

N [w

The high speed fan configurations to be considered later in this report have

stator to rotor ratios of the order of 1.05 and 1.12, which are within these
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limits. Should the upper -limit prove restrictive for other configurations, the
stored boundary data for the interface of domain 5 with domain 4 could be ex-
tended to span an arc 5(2w/N2), for example, by including two passages on
either side of the central passage, which would increase the upper limit to
,N,2/N,1 < 5/2. Some modification of the computer program described in Volume

It of this report would, however, be required.

. A more detailed exposition of the development and application of the phased
boundary conditions is contained in Appendix | of this report. In particular;.

hat the required boundary information from adjacent blade-

[ = Ut LI

it is demonstrated
torblade passages is generated as one passage of the first row crosses one
blade of the second row, and that the desired periodicity is attained asymp-

totically in time.
Initial Conditions

The initial conditions need be considered only to the extent that they bear
on the asymptotic limit in time, since only the asymptotic solution is of

interest. Several observations relative to this point should be emphasized:

(a) The initial data is necessarily approximate, at best, since determina-
tion of the exact solution is the objective of the calculation. The initial
transient solution is associated with the difference between the initial data
and the exact solution, and consequently the time needed to attain an asymp-
totic solution may be expected to diminish as the accuracy of the initial data

is improved.

(b) The initial data can be approximate in the sense that it does not
satisfy the boundary conditions, or it does not satisfy the governing equa-
tions, or both. If the initial data does not satisfy the governing equations,
the resulting fransient solution has no physical relevance; only the asymptotic
limit is meaningful. On the other hand, if the initial data satisfies the
governing equations but does not satisfy the imposed boundary conditions (i.e.,
it satisfies some other set of boundary conditions) then the resulting tran-
sient solution is physically relevant; it represents the response of the system

to an impulsive change in boundary conditions. The computer program has not
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been structured to handle such impulsive changes in boundary conditions, but

the ability of the formulation to do so is simply pointed out.

" (¢) As a consequence of the present formulation of inlet and discharge
boundary conditions, existence of an asymptotic solution for arbitrary initial
data or for arbitrary boundary conditions cannot be guaranteed. Obviously,
it is possible to specify inconsistent boundary conditions, such as an unattain-
ably high pressure ratio across a stage, or initial data that generate a tran-
sient solution which violates certain underlying assumptions, such as u > 0
at the inlet and discharge station. An asymptotic solution cannot be attained
in such cases (i.e., the computer program ''bombs''). However, this problem
should not be any more disturbing than the failure to reach a stable operating
point in an actual turbomachine due to surge, for example. In the present
formulation, possible non-existence of an asymptotic solution is the penalty
incurred by modelling as closely as possible the actual wave mechanics of the
inlet and discharge flows without modelling the entire starting process by
which a stable operating point is reached. On the other hand, if existence of
an asymptotic solution is demonstrated for a particular set of boundary condi-
tions and initial data, then uniqueness of the numerical solution necessarily
follows. |If it were non-unique, the numerical solution would drift through
an endless succession of states, since each time step is a new initial value
problem with a perturbation of the data provided by the round-off error. In

other words, convergence of the solution guarantees its uniqueness.

(d) It should be apparent from the preceding discussion that the initial
data can bear on the existence of an asymptotic solution, but the extent to
which an asymptotic solution depends on the initial data is more difficult to
define. It is conjectured here, on the basis of experience thus far, that
variations in the initial data within those bounds for which a solution exists
have no effect on the asymptotic solution. [t is clear that the solution at
any instant during the transient oscillation through which the flow proceeds
can be regarded as an initial condition leading to the same asymptotic solu-
tion. Although this is not a conclusive proof of the conjecture, it tends
to support the limited observations on which the conjecture is based. In
connection with this same question, it should be recognized that application

of the inlet and discharge boundary conditions formulated herein to a duct
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flow without. any turbomachinery would not be sufficient to.define a unique so-
lution, as is frequently the case in inviscid flow problems. An infinity of
solutions, ranging from no flow to choked ?]ow, could satisfy the imposed
boundary conditions, and only the initial data would determine which solution
(i f any) would be obtained. It is the addition of the rotating blade row and
the application of a Kutta condition to each airfoil which provides the addi-
tional constraint that defines a unique solution. From this viewpoint, the
role of initial conditions should be irrelevant, as long as a solution can be
obtained.

In the present formulation, initial conditions can be specified in either
of two ways. |If no.previous information is available (a "cold start“), the ini-
tial data for the entire computational domain is approximated from the inlet
and discharge boundary conditions, (supplemented by u__ in the open duct case)
and an initial value of the swirl angle, tan—1 v/u, at the inlet. In this
case the inlet pressure and entropy are imposed in the domains preceding the
rotor. The density is computed from the equation of state and the meridional
velocity from the inlet mass flow rate (pu2mrb)__. The circumferential ve-
locity component is approximated by maintaining the inlet value of the tangent
of the swirl angle, (v/u), throughout these domains. Within the rotor, a
linear increase in pressure from the inlet value at the leading edge station
to the discharge value at the trailing edge station is assumed. An entropy
gradient may also be imposed across the rotor corresponding to anticipated
shock losses. Downstream of the rotor, the pressure and entropy obtained at
the rotor trailing edge station are assumed to prevail. The density and
meridional velocity are again obtained from the equations of state and inlet
mass flow rate, respectively. Downstream of either blade row, the slipstream
is assumed to lie on a continuation of the trailing edge camber line, and the
circumferential velocity component is approximated from the slipstream angle
rather than the inlet swirl angle. The blade surface and slipstream paint e
routines are then activated for one time step to satisfy the boundary condi-

tions on these surfaces.

1f a previous solution, employing the same grid structure, is available

(i.e., a "restart'') it may be used as initial data, with either the same or
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revised boundary conditions.  However care must be exercised in this regard
when carrying out a computation using the phased boundary conditions. The
elapsed time must always be measured from the ''cold start'" since the cyclic
procedure uses stored boundary data which is identified by a time counter that

cannot be altered when ''restarting'’ the computation.

Finally, it is pointed out that an initial transient solution which is
physically irrelevant can excite slipstream oscillations which are sufficiently
violent to abort the computation. Therefore, provision has been included to
utilize a '"'small disturbance' type slipstream approximation during the initial
transient phase. In this case, the slipstream point algorithm is carried out
in its entirety, but the resulting solution is applied on the original slip-
stream contour, which is held fixed. The computation of the slipstream motion
can be restored after the initial transient phase of the interior solution has

decayed. This option can be regarded as a ''two phase'' initialization procedure.

BOUNDARY LAYER AND WAKE ANALYSIS
Motivation and Approach

The requirement for evaluation of viscous effects in compressors and/or
fans arises from a number of sources: (a) the displacement effect of the
boundary layers on the blades, and on the hub and casing walls constricts the
inviscid flow area and thereby alters the inviscid solution, (b) the viscous
drag is largely responsible for the loss of total pressure through the stage
(in a shock-free flow it is solely responsible), (c) passage of one blade row
through the wakes of a preceding row contributes significantly to the unsteady
lift of the second row and the associated acoustic properties of the stage,
and (d) in the extreme, the inviscid portion of the flow is entifely engul fed
by turbulent eddies. |In the last case, the physical and mathematical character
of the flow is fundamentally changed, and the analytical model must be reformu-
lated accordingly. In the present approach, as described in the preceding sec-

tion, it is assumed that the flow is predominantly inviscid, and viscous ef-

*Details of these procedures are contained in Volume i1 of this report. Note
that the stored data is the non-dimensional form defined by Equation (49).
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fects can be modelled by standard boundary layer theory. Thus, the situations
in which viscous effects predominate (i.e., separation or fully turbulent flow)
are excluded. However, approximate representation of the first three effects

noted above is incorporated in the present model.

The displacement interaction between boundary layer and inviscid flow under
steady conditions has been, and remains, a subject of extensive research. Prac-
tical computational methods which are applicable when separation (i.e., flow re-
versal within the boundary layer) occurs have not been firmly established as yet.
A less satisfactorfy situation exists in an unsteady interaction, for which even
the definition of separation is not universally agreed upon. Unfortunately, the
pressure gradients in compressors are usually adverse and, therefore, separation

is a significant problem.

The intent of the present effort is to provide only an approximation to
the boundary layer displacement effect on the blade surfaces; therefore re-
course is made to standard steady boundary layer representations based on zero
pressure gradient and local similarity concepts with heuristic corrections to
account for regions of separated flow. [f separation is indicated on this

basis, a more detailed analysis of the boundary layer is clearly required.
Quasi-Steady Approximations

The use of steady boundary layer representations implfes that either the an-
ticipated time scale for variations in the inviscid flow is much larger than
the characteristic boundary layer response time, or that the anticipated un-
steady components of the viscous flow solution are small compared to the
steady components. The first condition can be examined by comparing the time
for a diffusion wave to traverse the thickness of the boundary layer with the
period between rotor blade passings. The speed of a diffusion wave is of the
order u/(p® and hence the time to traverse the boundary layer is of the order
dzp/u. Therefore, the first condition requires:

2
[
SRR (143)
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The maximum boundary layer thickness .is on the order of

"5 R_1/2-léminar : : : .

L . | (144)

-1/5

R turbulent

1
3
where R = puc/u is a Reynolds number based on chord length and characteristic
(mean) values of velocity, density and viscosity in the inviscid flow. There-

fore, Equation (143) becomes:

25 laminar

27 u r

oIS Do - (145)
%-R3/5 turbulent

(The laminar value is only included for the sake of comparison; a turbulent
boundary layer is expected to prevail over most of the blade under typical

operating conditions.)

Typical values of the parameters appearing in Equation (145) are of the
order of 2n/N = 1/10, u/Q@r = 1 and r/c = 10. Therefore, the required inequality
is not generally satisfied; i.e., the response time of the boundary layer is
longer than the period between blade passings. Consequently, justification of
the assumption of a quasi-steady viscous solution must be predicated on exis-
tence of relatively small amplitude unsteady disturbances in the inviscid flow.
Thus, it is consistent with use of acoustic or linearized inviscid flow theory,
but not necessarily censistent with the present use of nonlinear theory. The
possible requirement for an unsteady viscous flow analysis to correctly repre-
sent the viscous-inviscid interactions in rotating turbomachinery should be

recognized.

Blade Boundary Layer Displacement

Thickness and Shear Stress

(a) Basic Equations - In the present context, the principal interest in

the boundary layer solution resides in determination of the displacement effect
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on the blade surfaces and the initial conditions for the wakes which emanate
from the trailing edges. Therefore, the well known momentum integral equa-
tion (cf., Reference 15, Chapter VI11) is adequate to provide the required
information:

8 ‘o

E = & o+ 1= e o+47 ' (146)
dx o j“pue Mg

where x is the distance along the blade surface measured from the leading edge,
u_ refers to the magnitude of the velocity vector in the inviscid flow at the
b?ade surface (in the frame of reference of the blade row), p is the corre-
sponding density, and density variations within the boundary layer as well as
the effects of variable stream sheet thickness and radius are neglected. The

shear stress, displacement thickness and momentum thickness are defined by:

~
|

ou
u (37 _ (147)
y=0

' = I (1-2) 4 (148)
Ue .

o - f_iu—_i) & . (149)
u .

(o] e e

where u is the velocity within the boundary layer. As will be shown below

Equation (146) can be transformed to the following form for both laminar and

turbulent boundary layers:

— = AR T (150)

where the parameters A and B are approximate functions of the shape factor,
§ /6, pressure gradient, Reynolds number, 'etc., which will be derived below.
Numerical integration of Equation (150) by the simple Euler formula provides

the displacement thickness at the grid points spanning the blade surface:
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®

s

. S, + - AR . Ax
j+ J ( )J

Integration is begun midway between the leading edge and the first suffacgl
point to avoid the singularity at the leading edge (x = 0). Evaluation of

the shear stress is outlined below.
(b) Laminar Flow - The solutions of the Falkner-Skan equation]6, i.e.,
YR o 2

£+ fF 4+ BO-F ) = 0

derived by Hartree17 (cf. Reference 18 for a complete derivation and discus-

. (151)

(152)

sion of this equation) form the basis of the laminar flow approximations which

are utilized up to the transition point. In this case

f = f(n)
- %
u
_ mt1 e
ni= == o)
ux
_ 2m
B = m+1
u = uef (n)
Accordingly, .
- 2z
- +1 Y -
T, T Uy (EE_' o =) f (o)
ux

and, from Equation (146) with dGe/d; = 0:

B3 X i . _
ds - [ (m+1 f (o) R 3
- ] 2
dx
Therefore, by comparison with Equation (150), the values of A and B for a

Jaminar flow are identified as

& 1

T TS T
A= 5 &) f ()
B = 1/2
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(157)

(158)
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. * »
The values of & /6 and f (o) obtained from the Hartree solutions have been
curve-fit as a function of the pressure gradient parameter B8 for the attached
flow branéh;'é > - .1988:

L - 216 + 1.86 exp(-7.367 (8 + 0.1988)) o (161)

£ (o) = 0.79 (B + .1988) % C (162)
Séparated flow solutions are obtained for 8 < - .1988. For this case § > w

and f (o) < 0. The condition

&
A

& £ () = 0.0 (163)

is used to permit continuation of the integration of Equation (150) through
the separation region. However, the result should be viewed with caution if
separation is indicated, as a more detailed viscous solution is required for

this case.
(c) Transition - The criterion for transition from laminar to turbulent

flow is based on a study by Pretsch18 described in Reference (15), Chapter XVII.

Transition is considered to occur when:

RS:': > Rs:‘: (161'*)
critical

where Rd* = puéx/u. The critical Reynolds number is defined by:

( 60 o for B < - .1988
R = { 60 +600 (1 + ngg) for -.1988 < B8 <0  (165)
critical b
660 + 120008 for B >0
\
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(d) Turbulent Flow - A power-law velocity profile is assumed to be de-

scriptive of the turbulent boundary layer (cf. Reference 15):

- - Wn -
M (l) (y < s) , (166)
5 S
e
In this case
% [
& = (167)
_ Sn
® = TOwmy (Z+ (168)

19

This type profile was experimentally derived for pipe flows by Nikuradse -,
for which the corresponding shear stress law was proposed by Schlicting

(Reference 15, Chapter XX):

T, = paZ .0225 Rg (169)

where R6 = puS§/u. Substitution of these results into Equation (146) with
dae/d; = 0 produces Equation (150), with the following values of A and B

for turbulent flows:

0.8

A = (2;?) [0.028 (1:n) (2+n)] (170)
B = 0.2 (171)

The folltowing empirical correlations of the exponent n and factor B have been
developed to extend the applicability of this result over the range of Reynolds
numbers and pressure gradient effects discussed by Schlicting (Reference 15,

Chapter XXI and1XXlI):

v

2.183677 + .573308 log R -.0136455 (log R)2 for R < 1.7x106

n = (172)
7.6 for R i_1.7x106
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2 + (n -2) exp [Apx log (: :3)] for p- >0

2 o
n= Lp- - _ (173)
. 2n - [2 + (n -2) exp [- 355- log (E:E%O]] for Py < 0

( 0.2 - .061 exp (R - 1.7x106) for R < 1.7x106
B = { | (174)
’ 0.139 for R > 1.7x10°

\

where Py = Bp/ai, L is the reference léngth used for non-dimensionalization of

the inviscid flow, and Ap is the overall static pressure ratio across the stage.
Blade Wakes

The main interest in the wakes of a blade row resides in the reaction of the
blades of a succeeding blade row to traversal of each of the wakes of the first
row. The reaction is principally that of an airfoil passing through a nonuniform
inviscid flow field (i.e., a ”gust“)zo. However, the degree of nonuniformity
(and the intensity of reaction thereto) depends on the diffusive properties of
the viscous flow; the axial distance between blade rows is paramount in this
regard. Although further diffusion can occur downstream of the plane of the
leading edges of the second row, the identity of the individual wakes of the
first blade row will be lost to a large extent after impingement upon the second
row. Therefore, in the present program the inviscid slipstreams and viscous
wakes of the first blade rows are only calculated up to the plane of the leading
edges of the second row, i.e., the interface of domains 4 and 5. At this sta-
tion the inviscid flow field at the entrance to domain 5 at any instant is con-
sidered to be the composite of the inviscid and viscous solutions at the exit
of domain 4. In other words, the identity of the individual wakes of the first
blade row is lost downstream of this station, but their momentum and energy
defects are transferred to the inviscid flow field through definition of cir-
cumferential distributions of flow properties at this station which are com-
posites of the inviscid and viscous wake solutions. The manner in which the

composite solution is formed is described following the development of the wake

solution.
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in view of the intended application of the wake solution, greater emphasis
has been placed on accurate description of the velocity defect within the wakes
than is given to description of the boundary layer velocity profile. Accordingly,
a more rigorous theoretical model of the wake has been derived, although it still

lies within the framework of a quasi-steady integral method of analysis.

Governing Equations and Boundary Conditions
. .

The standard boundary layer equations are assumed to apply along the blade
slipstreams. The ;, ; coordinate system defined in connection with analysis of

(N

the slipstream (Figure 7) forms the present boundary layer coordinate system"

which is shown in Figure (11). The governing equations are, therefore, stated
as:
3pu 3ov 1 dAy, {1 3A
— + — = - pu (K' E;J ~'DU<A % (175)
Ix 3y
9 - -- d d -
- (ou? + p) + — (pav) = = (&) - puz (+ %)
Ix 3y oy Yy (176)
+ szr QL_ cos¢
dx
3 -7 ) -7 i} aH -, 41 23
2ow) o+ 2w = 2wy o (% (177)
A 23X
ax 3y 3y ay
where:
1 38A _ cos ¢ dA _ ldr 1db
A Bx A dx _ ©°% ¢(r dx T b dx (178)
Ho= h o+ = @2+ - 0%d (179)

All time derivatives have been negiected and the standard boundary layer ap-
proximations have been invoked, (e.g., v << u). The Prandtl number Y Cp/k

has been assumed equal to unity. The viscosity coefficient u can be considered

*In this context ; denotes an outward normal from the slipstream; thus ; = ];].
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to represent either the laminar value associated with molecular-diffusion or
an effective ""eddy viscosity'' associated with turbulent motion. In view of
the extreme remoteness of the possibility that a laminar flow could exist in
the wake of a fan or compressor blade under normal operating conditions in
either full-scale flight or a sub-scale test facility, only the turbulent
case is considered herein. In this connection, it should be emphasized that
the previously noted compatrisons of inviscid and viscous time scales should
be extended to include the characteristic frequency range of turbulent fluc-
tuations. The present usage of ''eddy viscosity' concepts and associated re-
sults (derived, from experimental observations in steady inviscid flows) is
predicated on the assumption that the frequency range of inviscid flow oscil-
lations induced by blade row interactions does not overlap the turbulence
frequency range. Consequently, the two unsteady flow phenomena can be un-
coupled. This assumption is of course suspect, but Tts removal requires re-
search into the fundamentals of energy exchange between the inviscid flow

and turbulent motion that is well beyond the scope of the present study.

The boundary conditions pertaining to the wakes are summarized as:

At y =0 v = 0
u 3
é% = _E. = 0
3y 3y
%
At Ty Gos e,
T = Tf
@%. = 2;. = 0
ay ay
At - _ - . % - * [
% *r.E. 6wake Gboundary layer
9 =
wake eboundary layer

v

6L

(180)

(181)

(182)

(183)

(184)

(185)

(186)



The subscript f denotes the instantaneous inviscid flow values measured at
some suitably defined front between the inviscid and viscous flows, which im-
plies Qf < 2nr/N. The boundary conditions for the case when the wakes merge

to form a completely viscous flow will be stated in a following paragraph.

The conditions expressed by Fquation (181) are approximate, since the-
wakes will not, in general, develop symmetrically about the slipstream posi-
tion defined by ; = 0. . However, the displacement of the line of minimum ve-
locity and zero normal gradient of velocity from the slipstream position will
be neglected. Furthermore, the asymmetric character of the wake, due to the
differing boundary conditions which may exist on each side of the wake as
y - Qf, as well as the asymmetry of the boundary layer solutions of the blade
trailing edge, will be approximated by using two symmetric solutions; one per-

taining to 0 < y < Qf Q and the other to 0 < y < Qf 0’

At sufficlent distance downstream of the blade row the wakes will entrain
the entire inviscid flow field and merge to form a fully turbulent flow. In
this event, the boundary conditions given by Equations (182), (183) and (18%4)

are replaced by:

- _ = - 2rr  _ - . oo
At y = Ye o =N yf,u' v 0 (187)
v 3L (188)
3y oy

The analyses pertaining to independent wakes and merged wakes differ correspond-

ingly as outlined below.
Analysis of Independent Wakes

The method of integral re]ations21 is employed using a single strip to cover
the region from the wake axis (y = 0) to the wake front (outer edge) (y = ;f,g
or yf,u)' This approach is equivalent to use of the Karman momentum integral
equation for the boundary layer; however, the surface boundary conditions are
replaced by a set of differential equations corresponding to Equations (176)

and (177) evaluated at y = 0, where Equations (180) and (181) pertain:

65



du
a _Tnl =—..1_.d_5) + Em(
m dx Pm dx
- mo_ ‘BZH
“n Tz T fm |2
™o dx m oy

r
+ Q°r =— cos¢
x

{The subscript m denotes minimum value, which in accord with the assumption

of symmetry occurs at y = 0.)

)

The integral form of the continuity equation results from multiplication

of Equation (175) by dy and integration fromy = 0 to y = §f(§) (where ;f

denotes both Y g and ;f,u) Observing the above noted boundary conditions at
b .

these limits, integration yields:

Y

o)

1%

Corresponding integration of Equations (176) and (177) and substitution of

Equation (191) into the resulting equation yields:

(e}
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xd»

dx

Yf )
J. pu(uf - u) dy
o
7
cos¢ I p dy
o

(189)

(190)

(191)

(192)



- , ) 5
e - dH F -
—d=_— I DG(HF -H) dy + — I (pfuf pu) dy
cdx [+] dx. o}
Yf . | |
SN j-_pG(Hf-H)~_d;’ (193)
(o]

Equations (191), (192) and (193) each represent a pair of equations; one for

Ye T yf,l’ uf;l’ Ve = vf,i’ etc. and the other for Ye = yf,u’ uc = uf,u’ etc.
The ; coordinate is transformed according to:
Y y
— & = P >
n] = f dy and nz j dy (19"')
pf,l pf,u
o o]
and transformed wake thicknesses are defined by:
yf,l yf,u
5, = e dy and § = £ dy (195)
Pf,e “ Pf,u
The eddy viscosity coefficient is assumed to transform according tozzz
P 2 p 2
e, = ( ) e, = ( ) € (196)
' ) . °f,u u

where €; denotes an equivalent incompressible value. The above transforma-
tions reduce the system consisting of Equations (183) through (193) to that
of an equivalent incompressible flow. The eddy viscosity in incompressible

flows has been experimentally correlated byh:

*For the sake of clarity, discussion of the basis of the selected eddy viscosity
law and velocity profile representations is deferred to the end of this derivation.
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e, = .032 (uc-u) 8 L ‘ (197a)

in view of the noted asymmetry in the present application, Equation (T9Za) .

is Interpreted as:
e, = .032 ((uf’l + uf’u)/Z - ou) (8, +68))/2 . (197b)
The velocity profile is represented by a corresponding approximation:

(uf,l - um) (1 + coswnl/ﬁg)/z for 0

1A
~ 4
~
-
P

ug - u = : (198)

| A
~< 1

(uf u

’

= u ) (1 + cosmn /6 )/2 for 0 < ve
A similar representation is assumed for the relative total enthalpy profile,

however, the possible existence of a different thickness for the relative

total enthalpy defect than for the velocity defect is recognized:

(Hf,l - Hm) (1 + cosnnl/GT’l)/z for 0 <y < YT.4
He -H=¢§ | - cooo (199)
(Hf,u - Hm) (v + cosnnu/6T’u)/2 for 0 <y Y14
where GT,Q # 62 and GT,u # §, s assumed. In this connection, it should be

pointed out that compressor or fan blades are usually uncooled and, therefore,
operate at a wall temperature corresponding to the average absolute total
temperature (or total enthalpy) of the airstream in which they are immersed.
Thus, the difference H’

.F
the local, instantaneous total enthalpy and the average value experienced by

- H; will be on the order of the difference between
the blade. !t is anticipated that in general:
£ (200)

Furthermore, it is well established that
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U, - u << u

. (201)
f

£
prevails within a turbulent wake a very short distance from the trailing

edge. It,therefore,fbilows that:

olo, = 1 ' ' I - : - (202)
Also in connection with Equations (198) and (199), it should be noted
that double-valued second derivatives of‘vélocify and total enthalpy at

y = 0 result from the two forms of each equation. Therefore, the second

derivatives at y = 0 are approximated by:

QEQ) = -———itii——— ((u +u, )/2 - u) ' (203)
22 = (s +5)2 R R T “m 3
"m ] 2 u
2. 2
3°H 2m ’ i -
(anz }y = (5 s )2 ((Hf’z + Hf’u)/Z Hm) (204)
m T,2 T,u

Substitution of the above-stated profile representations; eddy-viscosity
law, and transformations (e.g., Equation (178)) into the system given by Equa-
tions (189), (190), (192) and (193), and using p/pf ~ 1 in evaluation of the
Integrals, yields the following set of ordinary differential equations:

du 2 _ 2

T T (= = S (TSP ZE ST
™ dx °m dx 2 u ’ ?

(205)

+ Qr EL cos¢
X
- (W3}
g 2 .
_ de .032% (6Z + Su) _ _ - -
T e aer - MR a0,
T,2 T,u
(206)

+ Hf",u)/2 - Hm]
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A more specific definition of the frontal locations T and Ye o is now
3 ’

required to carry out the numerical The

frontal

tained in the wake at any streamwise position to that in a corresponding in-

g 9% 1 (d“m St S TP S 2% IO B 1.0
8 ax (GF,I - u) dx dx Gf,| dx PE,i dx
2
_ cos ¢ dA 20°r cosé dr | for i=¢ and u
- -~ = X
Ao uf,i(uf,i - ug)
. . } .

I A 1 (d” dHf,i) ] duei 1 der
i dx (He ;- H) dx  dx b o dX °f, i dx
dHf,i % (uf,l Uy cos ¢ dA .

- (—) 3 = iy wael o for i = 2 and wu
G, . dx (H. . - H) x
f,i T,i f,i m

viscid streamline, namely:

Thus;

where:
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u. ..
inviscid

Pinviscid

@]

dy)

(x,

(x

Yf
inviscid _j
(o]
(e udy); viscid
Y = Y t)
Y = Ve t)

’

(p u dY)wak

integration of the above system.

(S

location can be unambiguously defined by matching the mass flow con-

R IR

(207)

(208)

(209)

(210)

(211a)

(211b)



and:

fff_ = [auinviscid + [auinviscid dyf (212)
dx ax - - - 3y - - - dx
X’Y=Yf,t Y X,Y=Yf,t

The x derivatives of Hf and Py Must be correspondingly defined. Since p/pF = 1,

d§f . ds, .
‘TT‘L‘z'f?L for i = 2 and u (213)
dx dx

Therefore, Equation (207) must be rewritten as:

d - -
1 { U - (ﬂ{l] - ( 2 au __]._ﬂ’_) - ‘ﬂz_i%&_ 292rc05¢ dr
- - - = - - Op & o= X - - -
ds. i (uf,u um) dx ax J ug ;X f,i ox uf,i(uf,i U )dx
dx 1, :’»u{_.’i - 2um au) o
R - - —) F oo
i ue (uf P um) 3y f ay
’ ’ _ (214)
for i = 2 and u
where 3/9x and 8/3; denote the inviscid flow values at (x, y = §f’ t} as used
in Equation (212)

To within the approximation contained in the above system of equations, the
displacement, momentum defect and thermal energy defect thicknesses in the wake

are defined by:

- u
§; = &, f:' i for i = 2 and u (215)
2ug o
af i am
6. = & 2 for i = g and u (216)
2ue 4
He p = H
eT . = 8 - for i = ¢ and u (217)
5 1 T,i
2He
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Thus, 6? ¥-ei in this context. However, in the boundary layer at the “trailing -’
edge 8% # 0; therefore, ‘the wake solution cannot match both the displacement
and momentum thicknesses of the boundary layer solution, and a mismatch in one
or the other must be accepted. Since the displacement thickness is to be used
as an effective boundary of the Inviscid flow, a mismatch in 6* is considered
unacceptable. Therefore, the initial conditions for the wake solution are

taken to be:
u (0) = 0.0 (218)

1
(c T - = r (219)
m P blade 2
trailing edge

pu
—~~
Q
~—
1]

62 (0) = 2 blade upper surface (220a)

.trailing edge

u blade lower surface (220b)

trailing edge

(221a)

I
o
—_
o
~—

8 T,JL(O)

§ T,u(0)= 6u (0) . (221b)

(The initial thermal defect thickness is equated to the initial velocity de-
fect thickness in lieu of any more precise information. Should a more de-
tailed boundary layer solution be incorporated in the model at a later date,

the initial wake conditions can be modified accordingly.)
Analysis of Merged Wakes

In the foregoing discussion, it has been implied that the wake of each

blade grows into a known inviscid flow field. However, at a sufficient dis-

tance downstream of the blade row the wakes will entrain the entire inviscid
field and merge to form a completely turbulent field. |In this case the pre- 'g

viously stated analysis must be modified accordingly. Following the previously
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outlined procedures, using the same small perturbation approximations, and
adopting the same profile representations",.the integrated form of the con-

tinuity. equation becomes: .

d . - . = .y COS Q dA - : o -

—_— + = - + _— 222
- § uf) .(um -uf) A dx ; - . ( . )

where now ug = ug o = Yt u and 6 = (62 + éu)/Z. Evaluating the momentum equa-

t{on on the axis (y = 0) and at y = yf,l = 2nr/N - yf,u gives:
du : 2 2 _
U _:E.= - éL- 9@- + .032 (uf - Um) _ﬂf- + er %& cos¢ (223)
dx m dx 26
and _
du 2 2
- f 1 d - -
ug T/ = T oo —% - .032 (Uf - Um) ‘ E:' + er gf-cos¢ (224)
dx f d 26 X
Substituting from Equation (224) into (222) gives:
du 2 2
Gp =% = oo w032 (- G) - (5, + 0p) 232 2
dx Pf  dx § dx
(225)
- er %E—cos¢
Adding Equations (223) and (225), and noting that Pg = O << 0g> yields:
_ _ du B o2 2 L _
{u, - u) m . 06h (0, -u) ~ - G, (u +u)_c_os__4>_gb_ (226)
f m d>_< f m 2-6- f m f A dx

Thus, the rate of changes of Gf and of am are determined from Equations (222)
and (226). Furthermore, the pressure is detérmined from the sum of Equations
{223) and (224):

du _ du
ety L - - G T ug —) + 20%r %5 cosé (227)
Pe Pm dx _ M dx dx _ :

“Note that the cosine function is particularly appropriate for this problem
due to the periodic character of the wake. See Reference (15), Chapter
23, p. 604,
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Evaluation of the energy equation on y = 0 and on y = ;f . = 2rr/N - ;f u
¥ t Bl

gives:
_ de _ _ - - TT2
u, —— = .032 (ue - um) (He = H) - (228)
dx 28
and _ dHg o .. 2
up — = - .032 {uc-u ) (H.-H) — (229)
f dx f m f m 23 '
from which the rates of change of Hm and Hf can be obtained. Note that
GT = § is required downstream of the point of merger.
it is remarkecd parenthaticaily that in the special case of dA/dx = 0,
Equations (222) and (226) can be combined to yield the well known result
that the maximum velccity aifferential (af - am) must asymptotically decay
linearly with increasing distance, in contrast to asymptotic square root
- e e _ . 1
decay rate for the individual biade wakes. 5
Eddy Viscosity Law and Velocity
Profile Representations
A variety of formulas have been proposed in various investigations to re-
late the eddv viscosity defired bv the Reynelds stress, namely:
= - = = (230)

(u/ay) "otirbelent

to the mean properties of a turbulent flow. The present formulation will draw
upon one of the earliest and most generally accepted eddy viscosity laws;
however, its validity can only be established by comparison with experiment and
it should always be regarded as tentative and subject to revision.

A "universal' number characterizing the eddy visccsity in a turbulent, in-
compressible wake was derived bv Towr-senc‘z3 based on equilibrium of energy

among the large-scaie eddies:
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RT = (uf - um) lo/e = constant (231)

where 20 is a wake width parameter defined by the requirement that the ve-

tocity profile conform with:

- u = (uf- Gm) exp (—92/222) (232)

Townsend23 obtained the value RT = 12.5 from a correlation of his data on the

wake of a cylindrical rod in the form:

R ~2
ug - u = (ug = u ) exp (-/-zﬁ— ET- —t ) (233)
d {x - x_)d
o
from which 20 can be identified as:
20 = (Cd (x - xo)d/VEF RT) (234)

where Cd is the drag coefficient, d the rod diameter and X, an effective
origin. A somewhat more useful definition of lo can be obtained as follows.
We note that Townsend's wake data can also be accurately correlated in terms

2L . .
of Coles wake function” as indicated in Figure (12):

W(n) {235)

where n = y/§ and &§ is the value of y where u = Ug. W(n) is a tabulated func-
tion based on correlation of turbulent boundary layer data, and is known to
have wide applicability to compressible as well as incompressible flow through
suitable trahsformationzS. W(n) can be accurately approximated (see Figure 12)
by W= 1 - cosmn. Therefore,

ug - u o= (Gf - am) (1 + cosmn) (236)

N —

The above velocity distribution is matched to the desired exponential form,
Equation (232), by requiring that:
75



31408d ALIDOT3A IMYM LNITNGYNL TVYNOISNIWIA-NON 2l 38N9i4

/K
o) 80 90 0 00 .
i I I 1 T %0.0
7
\Q
Qnd 4120
| 0g6=x O A
px
_ n*vv."m 008 :=x O J
40
0G9=x DO
(09¢i=Pay) viva S,ANISNMOL _..h._?__:
n-n
T; moon_u_mﬂlll 190
(§3100) (A & —— )0
480
»y 4
~
& Jol [



oo

X (1 + cosny/8) dy (237)

o

' —_ 2 - 1
g exp (- vy 2/210) dy = 3
o L

B, = §/VZr = 0.40 & - E o (238)

Therefore, if the velocity profile is represented by. Equation (236), the
ist '

eddy viscosity is consistently represented=’_.5y: )
- U, - G - . | : 2
e 0.032 (ug - u) 8 S (239)

Parenthetically, it is noted that in terms of the exponential form, the above

value of 2. gives u = .957 u_ + .0L3 Gm at y = 8.

F
It is emphasized that the above results pertain to incompressible flows.
The extension to compressible flows by transformation has been discussed by
Ting and Libbyzz. In particular, the postulate that the shear stress remains -
invariant under dehsity transformation (see Reference 22) has led to satis-
factory results at supersonic and hypersonic conditions and, thus, should be

quite accurate for the presentiy considered transonic and low superspni& flows.

Composite Solution

As previously indicated, the viscous and inviscid solutions obtained at the
exit of domain L4 are used to define a composite inviscid solution for the en-

trance station of domain 5. The composite solution is defined as follows:

Kucos¢)viscous @« <0
= ’ - e - +
Y (1 a)-(ucos¢)viscous “Yinviscid 0 <o <1 (240)
LIinviscid @ > 1



T
i

p =

where :

*]
]

~
fl

The variables denoted by u

<

f = .
(us'n¢)viscous

(1-a) (using)

V., . .
inviscid

H .
viscous

(1-a) H’

-

viscous
inviscid
p

inviscid

(3-8 /(5-5)

ly-y;| cos¢

v o, . .
inviscid

. + v, . .
viscous inviscid

-

Hinviscid

= £ and u

-

. and H .
viscous viscous

0 <o <1 (241)
a > 1
o :_O
0 <a<1 (242)
o 3_1
(243)
(24%)
(245)

are obtained from the pro-

file representation given by Equations (198) and (199) using the viscous solu-

tion u , H ., §.
m m 1

and ST ;

’

and the frontal values Gf ;

s

and H (i = 2 and u).

f,i

The range of values of y is selected to match the undisplaced vy coordinates

of the grid points on those two grid columns of domain 4 which bound the first

grid column of domain 5, and composite solutions are generated at these two sta-
tions, Equations (240) - (243).

column of domain 5 is then obtained by linear interpolation of the composite

The inviscid solution for the first grid

solutions, for use in accord with the procedures outlined in the sub-section

entitled "Periodicity Condition'.

Thus, the composite solutions simply replace

the inviscid solution which would be used to carry out the interfacing of domains

"L and 5 in the absence of viscous effects.

*The transformed circumferential coordinate v used for the inviscid solution in
domain 4 (and also domains 3, 5, 6 and 7) obviously includes the local displace-

ment thicknhess

(37)y;=re;+87 (i = ¢, u).

in definition of the computational

boundaries; i.e., in Equation
Thus, the displaced computational domain does not

span the entire blade-to-blade passage, whereas the undisplaced domain does.
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RESULTS

The method of analysis described above has been implemented in a FORTRAN
code26 and tested with respect to several single stage transonic fans for which
experimental data is available27’28. A combination of design information and
measured data for these fans has been used to define the initial and boundary
conditions. The ""infinite duct' inlet and discharge boundary conditions were
used in the calculations reported here; limited tests with the '"open end' con-
ditions were also conducted, but detailed comparisons with the "infinite duct"
model were not carried out. The meridional plane analysis of Katsanis and
McNally29 was used to define the streamsheet thickness and radius by tracing a

selected streamtube through the stage.

As a prelude to analysis of rotor-stator interactions, several isolated
rotor analyses and an isolated stator analysis were carried out. The stator
analysis will be discussed first, since comparison of the present method and
the relaxation method of Katsanis30 is possible for this case, which offers a
direct assessment of the program accuracy, independent of the viscous and three-
dimensional effects present in the transonic rotor data. Since the stator is
subcritical at the selected operating condition, the velocity-gradient tech-
nique30 provides a reasonably accurate benchwork solution for a shock-free
flow. The experimental data27’28 for the rotors will be used primarily to
indicate the predictive capability of the present method with respect to the
structure of passage shock systems.

The stator is part of a 1500 fps (457 m/s) tip speed transonic fan stage?7,
which will be described more completely later in connection with the rotor-stator
interaction analysis. The stator row has 46 blades and a hub to tip ratio of
0.6. The selected operating point corresponds to Reading 137, of Reference (27)
which is an open throttle, 100% speed condition. The selected streamsheet fcl-
lows the casing wall and has a thickness of 1/3 of 1% of the casing radius at
the inlet station (one chord length upstream of the rotor). The inlet Mach num-
ber is 0.6 and the inlet flow angle is -30.70. The stator is intended to produce
a purely axial exit flow. The blade section at the casing is shown at the top
of Figure (11). A grid network consisting of 17 columns (axially) and 9 rows

(circumferentially) in each of three domains (i.e., 459 points, excluding external
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grid points) was used for this case, as well as the isolated rotor cases to be
discussed next. The solutions converged within 103 time steps with this grid
point density, and each required approximately three minutes execution time on

a CDC 7600 computer.

An inlet Mécﬁlh;ﬁber 6f/0:65'éndﬂan'in]et flow angle qf-—30.0°, with neg-
ligiblte circumferential varia;jons,,were-obtaiﬁed from the present stator so-
lution. The outlet flow angle varied ciyqumferentfally from 6.6 to 7.00. The
relaxation solution was carriea out for the same inlet Mach number of 0.65, but
using the design inlet and exit flow angles of —30.7O and 0.0o, respeétively.
(Specification of the exit flow angle replaces the trailing edge Kutta condition

30 )

in the relaxation method” . Sixty-one grid columns and 20 grid rows were used

in the relaxation solution. :The surface Mach number distributions are shown on
the bottom of Figure (13). It can be seen that the effect of nose bluntness
(which is included in the relaxation so]ution39) is essentially confined to the
first 5-10% of the chord. The compression surface solutions are in quite good
agreement up to the last 20% of the chord, where the effect of the manner of en-
forcing the Kutta condition is evident. The suction surface solutions exhibit a
fairly uniform difference; the pfesent method results in a somewhat higher Mach
number over almost all the surface. |In view of the doubled grid point density

in the circumferential direction used in the relaxation solution, it must be re-
garded as numerically more accurate; however, the accuracy of the velocity-
gradient approximation for a local Mach_qumber approaching unity is uncertain.

27 has 44 blades and a hub-to-tip ratio of 0.5. The

The rotor for this stage
tip speed is 1500 fps, (457 m/s), producing an inlet relative Mach number of 1.526
at the design point. The tip diameter is 36.5 inches {0.927 m) and has an axial
chord length of 1.7 inches (0.0432 m) at the tip. The rotor has a shroud (vibra-
tion damper) located about 40% of span in from the tip. The stage also incluaed
24 variable camber inlet guide vanes, located slightly more than one rotor chord
length upstream of the rotor. Under the presently considered conditions the
guide vanes were set to zero camber, to produce a purely axial inlet flow to the
rotor. The same operating point (Reading 137) was examined, at which the stage
total pressure ratio was 1.48 ‘and the inlet relative Mach number at the tip was

1.49. The streamsheet was again assumed to be a very narrow layer along the

casing wall (having a thickness about 1/3 of. 1%.of the radius).
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An inlet Mach number of 1.47 was obtained in this case, and the rotor total
pressure ratio varied (circumferentially) from 1.37 to 1.50, in good.agreement
with the design conditions. The rotor pressure contours obtained from the pre-
sent solution are displayed in Figure (14a) and compare favorably with those ob-
tained from arrays of fast-response pressure gages in the casing wa1127, shown
in Figure (14b). A more direct comparison is offered in Figure (15) which pre-
sents the blade surface pressure distributions. The differences near the lead-
ing edge are probably attributable to the effects of nose bluntness. The ob-
served regions of compression-expansion preceding the passage shock (z/c = 0.7
on the compression surface and z/c = 1.0 on the suction surface) are indicative
of local boundary layer separation bubbles. The part-span shroud may also be
generating a shock wave which interacts with the blade shock system. In view
of these factors, the general agreement between theory and experiment is re-

garded as quite satisfactory.

The three-dimensional shock structure near the tip of a similar transonic
rotor was visualized using pulsed laser holography in Reference (28). In this
example, the rotor has a tip speed of 1600 fps, (488 m/s), and a design pressure
ratio (for the stage) of about 1.5. The tip diameter of the fan is 28.74 inches
(0.730 m) and the (axial) chord length is 1.804 inches (.0458 m). The inlet hub-
to-tip radius ratio is 0.46 and the nominal inlet relative Mach number is 1.6 at
the tip. The rotor has 40 blades, and includes a midspan vibration damper lo-

cated about 30% of the span in from the tip.

The streamsheet thickness and radius distributions were obtained by tracinc
a streamtube located about 5% of the span in from the tip and having 0.11 inches
(.00279 m) thickness at the inlet station one chord upstream of the blade row.
Since its thickness is less than 1% of its radius, the streamsheet radius clesely
follows the casing of the machine. Three operating conditions were examined;
(a) the design point {Reading 128), (b) 100% design speed with a pressure ratio
of 1.7 (Reading 126) and (c) 90% speed with a pressure ratio of 1.5 (Reading 106).

The computed pressure contour map for the design case is shown in Figure (16).
The presence of 3 weak shock off the blade leading edge is evident; it subserunntly
reflacts off thz lowe- blade at about the 85% chord position and then apparently

merges into a strong=r shock which crosses the pz:ssage from the trailing edqe of
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the lower blade to about the 85% chord position on the upper blade. These fea-
tures are generally in accord with the reconstructed holographic observationszs;
however, the interaction between the tip leakage vortex, which stands on the suc-
tion {i.e., low pressure) surface of the lower blade, apparently causes the rear-
- ward portion of the leading edge shock to bend forward somewhat such that it re-
flects off the lower blade at about 75% chord (rather than 85%), and the trailing
edge shock is correspondingly displaced upstream. The shock off the vibration
damper also appears to be interacting with the blade shocksza. In addition, the
assumption of a sharp leading edge may have reduced the strength of the leading
edge shock. The computed total pressure ratio at the discharge station varied
(circumferentially) from 1.45 to 1.51, in reasonable agreement with the overall
stage pressure ratio of 1.505 reported at this operating condition28. The rela-
tive Mach number at the inlet converged to 1.51 as compared to the initial value

of 1.53.

In the second case {Reading 126), the higher back pressure produced a modest
forward shift of the trailing edge shock near the upper blade, as can be seen in
Figure (17). The solution along the suction surface of the lower blade, as well
as the forward 50-60% of the compression surface of the upper blade, is virtually
unchanged, since forward propagation of the higher back pressure Is terminated at
the trailing edge shock. No experimental data is available at this operating

condition.

As can be seen from Figure (18), the reduced wheel speed of the third case
(Reading 106) results in a lower relative inlet Mach number, i.e., about 1.h,
and a further shift of the trailing edge shock, to form a normal shock across the
passage. However,.the holographic reconstruction28 indicates that fhe rotor is
"unstarted" at this condition, i.e., the normal shock stands across the passage
at the leading edge of the upper blade. The solution for this case was perturbed
several times, e.g., by increasing the back pressure, by altering the streamsheet
thickness distribution, and by reinitializing the data to an '"tunstarted' condition,
in an unsuccessful attempt to produce an "“unstarted' solution. Therefore, this
disparity between theory and experiment must be attributed to one or more signifi-
cant features of the acutal flow field identified above but not incorporated in
the present analysis: finite nose bluntness, viscous effects, and three-

dimensionality. Nose bluntness effects are believed to be significant in several
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FIGURE I7. COMPUTED ISOBARS FOR READING 126 OF REFERENCE (28)
Mg = 1.6 AND PRESSURE RATIO =1.7
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respects, and should be included to.enhance the acchracy and expand the range of .-
applicability of the present analysis, but in the present case do not appear to
be sufficient to cause the passage to ''unstart'. : The same comments can be made
with respect to viscous effects on the blade surfaces. However, the tip leak-
age vortex and the vibration damper shock present major three-dimensional per-
turbations. to the flow near the tip section, which are not easily accommodgted
in a two-dimensional model, but could cause the noted discrepancy between the

present results and the observed unstarted shock system structure.

Finally, the rotor-stator interaction has been examined at the open throt-
tle, 100% speed operating point (Reading 137 of Reference 27) previously selected.
As pointed out earlier, the stage includes 44 rotor blades and 46 stator blades.
Since the flow leaving the rotor is supersonic (M = 1.1) upstream propagation of
disturbances from the stator should be cut-off beyond the steady wave front in-
tersecting the trailing edge of the lower rotor blade of the passage. |If the
flow were uniform in the passage, this wave front would intersect the upper rotor
blade at about the 40% chord position; due to the nonuniformity of the flow it
actually intersects the upper blade at between 60 and 80% of chord. (See Figures
l4a and 14b.) The rotor flow field upstream of this wave front converges rapidly
to an essentially steady solution, whereas the stator is subjected to sequence of
perturbations which travel both upstream and downstream and, therefore, converge
to a periodic solution somewhat more slowly. The calculation was carried out for
one complete revolution of the rotor, which required about 30 minutes of CDC 7600
computer time, using a grid network consisting of 12 grid columns and 9 grid rows
in each of 5 domains. Approximately 1/4 of a revolution (500 time steps) was re-
quired to achieve an asymptotic solution in the rotor passage, and about 1/2 rev-
olution (1000 time steps) should have been sufficient to attain an asymptotic
solution in the stator. Unfortunately, a minor coding error in the application
of the phased boundary conditions was not discovered until 3/4 of a revolution
(1600 time steps) had been computed. Upon correction, a periodic solution was
achieved during the last 1/4 of the revolution. The entire solution was not

repeated due to the computing time requirement.

Provision to integrate the surface pressure distributions to obtain normal

force and moment coefficients was not included in the code, making display of
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the periodic solution rather cumbersome. Therefore. the pressure difference
across the blade at the midchord point has been selected to represent the blade
force. The midchord pressure differential across the stator is shown in Figure

(19) for a period covering approximately the last 1/4 of the rotor revolution.

Dencana a AF o martadies enalutian fo n of *wn varvy dict
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e

nct
waves is apparent. One wave appears to have a peak-to-peak frequency twice the
rotor passing frequency, and the other has a peak-to-peak frequency iwice the
stator passing frequency (relative to the rotor). Fourier analysis of the solu-
tion over the period of 1/2 a revolution would be required to quantify the spec-

tral components of the blade row interaction fieid.
As indicated above, the asymptotic flow field upstream of about the mid-
iti

ica
chord position of the rotor should be steady in the rotating frame of reference

of the rotor. However, as can be seen in Figure (20), a2 periodic pressure dif-
ferential across the rotor midchord location is obtained, and in fact even the
inlet pressure distribution exhibits periodicity in the rotating coordinate sys-
tem. However, the amplitide of these oscillations is much smaller than those
found in the stator. In view of the noted supersonic character of the relative
flow through the rotor, these oscillations must be attributed to numerical propa-
gation. Once the oscillations produced by the stator reach the leading edge of
the rotor they are correctly able to propagate upstream, since the axial velocity
component is subsonic., This spurious numerical propagation could be eliminated
by observing the correct domein of dependence in formation of :the difference
operator, along the lines of the type-dependent difference cperator used in the

relaxation method developed by Murman and Colez.

SUMMARY AND RECOMMENDATIONS

A numerical method of solution fof inviscid, transonic flow through a set of
interacting cascades has been described in detail. Particular attention has been
devoted to the statement and method of implementation of boundary conditions. The
solution algorithms employed at the interior and boundary points of the computa-

tional grid have been described in detail.
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Several numerical examples have been carfied out to demonstrate the cap-
abilities and limitations of the present method. For example, a sharp blade
leading edge is assumed in the present model. Comparison with a relaxation
method solution for a stator blade row having blades with small but finite
leading edge radius and operating under subcritical, transonic flow conditions
indicates that the effect of nose bluntness is felt over the first 5 to 10% of
the chord, which represents 10 to 20 nose radii for this case. In addition,
comparison with experimental transonic rotor data indicates that the leading
edge shock is generally stronger than that obtained from the present analysis,
which is attributable to neglect of the nose radius. Thus, the range of ap-
plicability and degree of accuracy of the present computational model could be
enhanced by inclusion of finite nose radius. However, the accuracy of the solu-
tion over the major portion of the chord length, under subcritical flow condi-
tions, was found to be quite good with only 9 grid rows used from blade-to-blade;

obviously it could be further improved by a finer grid network.

Examination of several transonic rotor solutions for 'started" operating
conditions indicates generally good agreement with the overall shock system struc-
ture; however, boundary layer separation effects on the blade surface, evident
in the data, produce local departures from the predicted shock structure. A sig-
nificant disparity between theory and experiment was encountered at a high back
pressure operating condition. |In this case, the present analysis produced a
normal shock across the passage near the trailing edge of the lower blade, where-
as holographic visualization showed a normal shock at the leading edge of the
upper blade, i.e., the rotor was in an "'unstarted' operation mode. This condi-
tion has been attributed to one or more observed effects of the three-
dimensionality of the actual flow field, namely: presence of a shock off the
midspan vibration damper, and of the blade tip vortex. Although not explicitly
observed, separation of the end wall boundary layer may also contribute to the
disagreement between the present two-dimensional analysis and the experimental

observations in this case.
A transonic rotor-stator interaction case was carried out for one full rev-

olution of the rotor. Unfortunately, any conclusions regarding the rate of con-

vergence to a periodic solution were compromised by the presence of a minor cod-
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ing error which was not detected during the first 3/4 of the rotor revolution.
A periodic solution was obtained in the stator during the final 1/4 revolution,
upon correction of the error. The rotor solution became asymptotic within the
first 1/b revolution, in accord with the rate of convergence of the isolated
rotor cases. Integration of the instantaneous surface pressure distributions
to obtain normal force and moment coefficients would facilitate interpretation
of the results and is, therefore, recommended as well as Fourier analysis of
these coefficients to identify attainment of an asymptotic state and to char-
acterize the spectral content of their temporal variation. Additionally, nu-
merical propagation of periodic disturbances through a supersonic portion of
the rotor passage, which on the basis of the mathematical zones of influence
should have been inaccessible to upstream travelling waves, has been noted. Al-

S | £
inite atrrere

L =

teration of the f nce operators to eliminate or at least minimize
spurious upstream propagation through supersonic zones by correctly observing

the mathematical domains of dependence of the grid points is also suggested.

Testing of the influence of the blade boundary layer and wake models and
of the acoustic far field boundary conditions was not included in the present
investigation due to time and budgetary limitations. In view of the above men-
tioned areas in which further improvement of the inviscid analysis is considered
predictive capability of the present method of analysis. Determination of vis-
cous and acoustic far field effects may logically be regarded as part of this

next level of development.
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APPEND I X :
TREATMENT OF VIRTUAL BOUNDARIES

I : Periodic Boundary Conditions -

In order to clearly describe application of the periodic boundary con-
ditions in the present analysis it is useful to illustrate the discussion by’
introducing several rotating devices that demonstrate certain general con-
cepts with minimal complexity of the geometric configuration. First, con-
sider a symmetric three bladed rotor developed into a cascade as shown in

Figure (A1):

CASCADE VIEW FRONT VIEW
_a2ZZnC
a
§ —————- —.b
y NV prsp——
X

Be——— — g
Ry ——— b C

: 2770 C

FIGURE Al ISOLATED BLADE ROW

Let virtual boundaries of the blade-to-blade passages be drawn from the blade

leading and trailing edges to *». In a reference frame fixed to the blades it

*These sufaces are not, in general, coincident with streamlines; flow can cross
them and disturbances can propagate along and across them.
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is clear that the flow field in each of the three passages must be identical
if the blades are identical and .the ‘inlet and ‘discharge boundary conditions
are uniform and steady. Therefore, at any instant the flow is circumferen-
tially periodic. The flow along line § is identical to the flow at the
spatially equivalent points on line 8. The flow along lines o andy is also
obviously equivalent at any instant. The same.argument also applies to points

in the flow field downstream of the blades.

Next ‘cons'ider ‘the system composed of a rotor and stator each having-the
same number  of blades; specifically, consider 3 blades each as shown in Figure

(A2).

When the blades are aligned, say at time'to; as shown in Figure (A2a),
it is clear that, because symmetry produces identical flow channels, the
flow along and through the virtual boundaries ekfendihg from x and between
teading and trailing edges is the same in each ''‘passage''; i.e., all influences
with respect to corresponding points in the respective ''passages'’ are neces-
sarily the same. For a different relative position, say at some later time
t, + At for example, see Figure (A2b), the noted symmetry persiszs since the
geometry of respective ''passages' is the same and again the flow through the
respective control volumes is identical. The same conclusion as above is
also reached regarding the equivalence of lines o with y and 6 with B. The

same argument agaiﬁ can be applied to the flow field between the two blade

rows and also downstream of the second blade row.

It is noted that due to the repetition of identical configurations with
identjcal flows it is clear that only one passage of each blade row need be
computed in order to determine the flow field inlthe whole periphery of the
stage. As a consequence of the equiQaléncé of the correéponding interior and
exterior grid rows, it is also clear that the boundary values, say on exterior
line §, can be specified by equating them to the currently computed values at
corresponding ‘interior points, in this case on line B, to enforce the periodic
boundary conditions for the passage being computed. The same reasoning is ap-
plied to lines vy and a, and_to corresponding virtual boundaries between and

downstream of the blades.
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It is not obvious that the case of an unequal number of blades in the
stator and rotor can be treated analogously; however, the following detailed
explanation is intended to demonstrate clearly that the above techniques for
specifying boundary conditions on a single passage can be extended to this
case by introduction of a phase shift. 1In this regard a pair of blade rows,
shown in Figure (A3a) and (A3b) portray the configuration of a 3 bladed
stator followed by a b bladed rotor which will be used to demonstrate the

unequal spacing techniques.

The underlying assumption here is that the inlet and discharge boundary
conditions applied upstream and downstream of rhe stage are uniform and steady,
and that the non-steady flow in the vicinity of the stage is stably periodic
in time. The first question that arises is whether the starting process as-
soctated with an arbitrary ser of initial conditions can lead to an asymptot-
ically periodic z~lution through use of the above-described numerical procedure
for treating spatially periodic boundary conditions. 1t is useful in this re-
gard to pictorially describe the physical starting process for a system of blade

" rows set into motion impulsively. This is done for the configuration introduced
above with both the rotational speed and free stream velocity subsonic.

Figures {Aka) to (Alm) show the development of a disturbance wave system thus

generated. Only those waves generated when a blade of the rotor is aligned
with a blade of the stator are portrayed in these figures and then only a por-
tion of each wave, extending a distance X s as shown in Figure {Ahc), are
shown for clarity. One complete revolution of the rotor, an angle of rotation

of 2%, is represented over 12 intervals. The time increment for each interval

is

2w 2n

At = Wi 12 (an)

where N1 is the number of blades in the stator, N2 is the number of blades in

the rotor and w is the rotaticonal speed. The corresponding angular change for
each At is

27 _ 2% :
Ay = TR (A2)
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Each time two blades are aligned, indicated by an arrow in Figure (Aka)
through (Abm), a pulse, shown as a large dot at x = 0 above the alignment, is

created; this pulse then travels out to form a cylindrical disturbance wave

' with increasing radius in time. .Figqre (Aka) has a pulse labelled (1) cre-

ated at t = 0 where the two reference blades (cross hatched) are aligned.

This pulse forms the wave, labelled (1) shown in Figure (Alb) after

fAt = 21/(12w) or Ad .= 27/12, and -a new pulse, labelled (2), is created where

-the next two b1ades‘are-align¢d (see arrow). These disturbances, (1) and (2);
.travel out to the positions shown in Figure (Alc) and a new'bulse, labelled -
{3), ‘is created where the next set of blades are aligned, (see arrow). The

-subsequent Figures (Ald) through (Ahm) show the waves travelling out further

and new ones being created similarly to Figures (Aka) through (Alc). The
first three waves are identified in Figures (Aka) through (Ahd) and (Abm).
Figure (Alm) can be considered as an asymptotic picture where the wave front
in the whole periphery at a distance of x = (a-u) + 124t is almost flat. If
asymptotic configurations at three times are now considered, say at times

t, t, * At and t, + 2At, as portrayed in Figures (A5a) through (A5c), several
important conclusions can be drawn. Consider first the geometry of the con-
figurations. |In Figure (A5a) the cross hatched reference or first set of-
blades are aligned (note the control volume indicated by the dot-dash border,
+-+~, to the top and right of it). |In Figure (A5b), representing a time At
later, the next or second set of blades to the right are aligned (also note
the corresponding control volume as described above). Finally, in Figure
(A5c) 2At after reference time t, the third set of blades are aligned (this
also corresponds to the two blades at the far left of Figure (A5c), thus the
control volume to the right of this set of blades shall be noted). Each of
these dot-dash control volumes correspond to the same relative geometry and

it can be seen by direct comparison that the asymptotic wave pattern is

. identical in each. The same thing is true at all other possible relative

blade positions, (yhich implies all other times) that are encountered as

the reference blade of the rotor moves through one complete blade spacing of
the stator. It is thus possible to construct the entire asymptotic solution
of the periphery at any one instant (and, therefore, at all instances) from
all of the asymptotic periodic solutions at successive times found in one
blade spacing control volume as the reference blade of the rotor travels

through one blade spacing of the stator.
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Next consider the dash~dash, ---, control volume always lying to the
right of the stator reference blade. This is the reference control volume
within which all solutions for the flow upstream of the stator will be found
as a function of time. Consider now the asymptotic wave pattern which would
be fouﬁd to the right of the reference control volume at time'to+2At in_Figure
(A5¢c). 7 It is obvious that it is identical to the wave pattern within the
reference control volume in Figure (A5b) at time t°+At or one At time stép
earlier (arrows '"A"). Next consider the asymptotic wave pattern which would
be found to the left of the reference control value at time to+2At i.e., in
Figure (A5c). Again it is obvious that it is identical to the wave pattern
within the reference control volume in Figure (A5a) at time t0 or two At
time steps earlier (arrows ''B")}. In view of this fact, the appropriate por-
tions of the earlier solutions found in the reference control volume can be
applied as boundary conditions to the reference control volume at the current
time before proceeding with the computation for the next At. This is carried
out, refer also to Figure (A3a) and (A3b), by equating the values at the
first row of exterior grid points, say line §, to the values that existed At
time step earlier at corresponding points, in this case line B8, when the geo-
metrical configurations with respect to lines o and B were the same. A similar
procedure is carried out for lines o and vy with its own phase lag. In addition,
all other horizontal boundaries (those between the blade rows and downstream of
the rotor) and vertical boundaries which require phase lags for proper speci-
ficatioh are specified analogously. These vertical boundaries are on the

downstream side of domain 4 and the upstream side of domain 5.

Consider now the starting process for the computational model. Figure
(A6a) through (A6m) portrays the computational starting problem comparable to
the actual physical one shown in Figure (Aka) through (Alm). The successive
application of the boundary conditions in this manner puts a numerical phase
lag into the solution through the imposed boundary conditions as the computa-
tion is started. As in the actual physical starting process discussed earlier,
blade alignment, indicated by an arrow between blades, produces a pulse, in-
dicated by a dot and identified in the first three waves in the Figures (Afa)
through (A6d) and in Figure (A7m). lInitially there are no previously computed
boundary conditions with phase lag to apply, hence, the ''tagged! disturbances

created in the reference control volume are of minimal accuracy and as such
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FIGURE A5. ASYMPTOTIC DISTURBANCE PATTERNS GENERATED
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FIGURE A6. STARTING PROCESS SHOWING WAVE DEVELOPMENT OF DISTURBANCE
WAVES FORMED WHEN BLADES ARE ALIGNED (SOLUTION WITH

BOUNDARY CONDITIONS HAVING PHASE LAG).
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are indicated by-ﬁsing dotted curves. When a more accurate boundary condition

is available, i.e., when each side of the reference control volume can be
specified from the solution at an earlier time, the accuracy of the solution
within the control volumewill be improved. This is indicated by dashed lines,
as for example in Figures (Abe) and (A6f) etc. The boundary conditions with
phase lag are applied as élready discussed previously and the arrows in Figures
(A6a) through (A6d) give, examples of the phase lag for several cases. As the
solution proceeds in time it also becomes more accurate due to the repeated
application of increasingly accurate boundary conditions; this is indicated
schematically by an inéredsing solidity of the lines depicting the wave fronts

in Figure (A6).

Ultimately all solutions of lesser accuracy propagate out of the computa-
tional domain and only the inéFeéthbly more accurate disturbances remain. The
result is that the waves associated with the approximated starting process are
lost and the solution becomes asymptotic in the same fashion as shown in Figures
(A5a) through {A5c). The criterion which determines the improvement is not
the angular distance that the rotor has travelled, but is the number of times
the boundary conditionshave been applied; consequently, the larger the number
of blades, the better is the solution after a complete revolution of 2nw. An
asymptotically periodic solution should be attained when successive solutions
at the interior points possess periodic relationships and phase lags with re-
spect to each other whi;h_precisely match those imposed by the application of

boundary conditions at the virtual grid points.
Horizontal Boundaries

The "horizontal' (i.e., streamwise) boundary points are specified by the
technique discussed above which is based on the fact that these surfaces are
""planes of eguivalence' with a phase lag. Figure (A7) shows a typical domain.
A row of '"virtual' grid points in this case k = 2 and k = KS+2 is placed one
mesh point outside the calculation domain; at these points the flow conditions
are equated to those existing at corresponding grid points one mesh point in-
side the opposite boundary, in this case K = KS-1 and K = § respectively, at a
time when the blade positions at that opposite boundary were the same as cur-

rently exist along the subject boundary. (The double-valued boundary rows
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K=3, 4 and K=KS, KS+1, have been introduced to account for jumps in proper-

ties across the slipstreams.)

Specification of -the phase lags for these horizontal boundaries is de-
scribed as follows. Let there be N blades in the upstream blade row and M
blades in the downstream blade row with N < M < 3N/2. Also let n be the num-
ber of time steps required for-one blade spacing of the larger pitch to be
traversed and m the number of time steps required for the smaller pitch to

be traversed. Then:

Nn = Mm

There are four sets of boundaries to be considered:

A. The upper boundary of domains 1, 2 and 4, adjacent to

K=KS, KS+1.

B. The upper boundary of domains 6 and 7, adjacent to
K=KS, KS+1.

C The lower boundary of domains 1, 2 and 4, adjacent to

K=3, 4.

D. The lower boundary of domains 6 and 7, adjacent to
K=3, 4.

The specific phase shifts are as follows:

(1) Set A at K=KS+2 = Set C at K=5 (n-m) time steps ago

Set D at K=5 (n-m) time steps ago

(2) Set B at K=KS+2

(3) Set C at K=2 Set A at K=KS-1 {(m-(n-m)) time steps ago

(4) Set D at K=2 Set B at K=KS-1 (m) time steps ago

The values computed at every time step at K=5 and KS-1 must, therefore, be
stored for later use. Since a considerable number of time steps are involved,
this cannot be done using core storage and is done instead by disk or tape

storage and recall in a non-random method.
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Virtual grid rows K=1 and K=KS+3 are required in domains 4, 6 and 7 to
evaluate the spatial derivatives needed af K=2 and K=KS+2 in the characteristic
solutions along the slipstreams. The procedure to define the solution at these
exterior rows follows exactly the format outlined above, e.g., Set A at
K=(KS+3) is equated to Set C at K=6 (n-m) time steps ago.

Entrance and Exit Boundaries

Solutions at the virtual grid points on vertical boundaries J=1 and
J=JS+1 in Figure (A7) (except, of course, the inlet and discharge stations
which are true boundaries rather than virtual boundaries) are linearly inter-

polated from the data in adjacent domains. Refer to Table Al for the following
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It is to be noted that in order to obtain spatially equivalent grid points for
the vertical boundaries between domains 4 and 5 account must be taken of the
relative motion of the domains; interpolation of data as well as application

of phase shifts are required.

In the case of equal numbers of blades in adjacent rows, matching flow
variables along the interface between domains 4 and 5 is straightforward; in
any other case certain subtieties occur in the process of minimizing the com-
puter storage and time requirements. Again a column of grid points external to
domains 4 and 5 are considered. In the regions of overlap shown in Figures
(ABa) and (A8b), it is clear that the exterior column of points from domain &4
overlaps the interior of domain 5, and vice versa. However, for the regions
of '"mon-overlap'' determination of the flow variables at these exterior grid
points is accomplished by a phase lag technique, analogous to the periodic
boundary technique discussed above, which is based on the blade positions during
a full cycle of movement of domain 5 relative to domain 4. 1In the case of
equal spacing the time-delay is zero, and the regions of non-overlap labelled
"Meft" and "right" in Figure (ABa) have a direct correspondence. On the other
hand, in the case of fractional (non-integer) spacing the matching of conditions
along the region of non-overlap must be based on a correspondence of relative
blade positions, which introduces a phase lag in the application of data on the

interface between domains 4 and 5.
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This phase is analogous to that discussed earlier for the horizontal
boundaries. The only added feature is that up to three separate sets of
data each with its appropriate phase shift must be applied since the overlap
can be such as shown in Figure (A8c) which clearly shows three regions where
data ‘must be provided. Thus the J=JS values for domain 4, refer to Figure
(A7), are equal to the J=2 values of domain 5 at times having up to three
different phase shifts, as discussed earlier, and the J=1 values for domain
5 are equal to the J=JS-1 values for domain 4 at times having up to two dif-
ferent phase shifts. Even though only two are needed, three ére specified
since the non-overlap region can be either above or below the larger blade

-gap. The interpolation merely ignores the extra data.

117



DOMAIN -

—

AND J INDEX

(Exterior)

(Js)
(1)

(Js)

(1)

(JS+1)

(2)
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(Js+1)

(2)

(JS+1)
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TABLE Al

DOMAIN
" AND J INDEX

(Interior)
2(2)

Interpolated between
1(JS-1) and 1(JS)

3(2)
2(Js-1)

Interpolated from Domain 4
6(3)

3(JS)

5(2)
Interpolated from Domain 4

6(3)

5(Js)

Iinterpolated between

7(2) and 7(3)

6(JS)

EQUIVALENT VERTICAL BOUNDARIES, WITH AND WITHOUT PHASE LAG

COMMENTS

Only if Domain 1 is active

Only if Domain 1 is active

Two blade rows
One blade row

Only if Domain L4 is active
(i.e., two blade rows).

Interpolated with or without
phase lag (IBLEQ=0 or 1)},
only if Domain 4 is active.

Interpolated with or without
phase lag (IBLEQ=0 or 1),
only if Domain 5 is active.

Only if Domain 5 is active
(i.e., two blade rows)

Only if Domain 7 is active

Only if Domain 7 is active
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