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I NTRODUCTI ON 

The flow field within advanced axial flow turbomachinery for aircraft pro- 

pulsion systems, specifically high bypass ratio turbofan engines, is character- 

ized by the presence of mixed subsonic, transonic and/or supersonic regions, 

multiple shock waves, shock-boundary layer interactions, and significant ef- 

fects of three-dimensionality and unsteadiness of the flow. These aspects of 

the flow field are not easily accommodated in the conventional analytical and 

numerical methods available for application to turbanachinery, and the design 

and analysis of advanced systems has been correspondingly constrained. A fairly 

recent review of methods for steady cascade analysis (i.e., two-dimensional 

compressible flow) is presented in Reference (1). In the area of transonic and 

mixed subsonic-supersonic flows, the most promising approaches appear to be the 

relaxation method for solution of the transonic small perturbation equation de- 

veloped in Reference (2) and finite-difference solution of the complete system 

of equations for an inviscid compressible flow, as applied to a cascade in 

Reference (3), for example. A steady three-dimensional transonic solution for 

a blade row obtained by the finite-difference method is presented in Reference 

(4)) and a corresponding solution for a wing using the relaxation method is 

presented in Reference (5) . Analyses of unsteady flows in turbomachinery have 

been limited to solutions of the small disturbance equations, usually with a 

view toward description of the acoustic output of turbomachinery; cf. References 

(6)) (7) and (8). Extension of the relaxation method to solution of the tran- 

sonic small disturbance equation for an oscillating airfoi 1 is presented in Ref- 

erence (9). Thus, while important advances have been made in the last few 

years, a considerable amount of work remains to attain a comprehensive predic- 

tive capability in the subject problem area. 

The‘present study has been directed toward development of a numerical method 

of solution of the complete unsteady equations of motion for a compressible, two- 

dimensional flow through a blade row (either rotor or stator) or a stage (both 

rotor and stator) of a compressor or fan. The objective is attainment of a 

steady solution for a single rotor or stator blade row or a periodic solution 

for an interacting pair of blade rows in a stage. Either case may include 

mixed subsonic, transonic and/or supersonic flow containing embedded shock waves. 

The initial effort is described in Reference (10). 

1 



In the case of a stage consisting of a rotating blade row and a stationary 

blade row, a set of blade-to-blade passages may be defined for each blade row 

in accord with the above considerations, but the noted circumferential peri- 

odicity condition will not apply. As has been established from considerations 

of the acoustic problem, cf. Reference (11)) the flow pattern wi 11 rotate with 

an angular velocity of NRQ/(Ns-NR) and have a circumferential period of 

2d(NS-NR). Only in the limiting case of NR=NS, which is usually avoided in 

practice, will identical solutions occur in each blade-to-blade passage at 

any instant. In the typical stage (NS>NR) the flow pattern wi 11 rotate in the 

opposite direction of the rotor. The solution in any particular passage at 

one instant can, therefore, be related to that in another passage at an earlier 

This phase lag forms the basis of a cyclic procedure developed herein 

lating the cond itions along the boundaries of the computational domain 

is composed of a set of blade-to-blade passages for the two blade rows) 

time. 

for re 

(which 

2 

The analysis is formulated with respect to a blade-to-blade stream sur- 

face, as depicted in Figure (1) for one passage of a blade row. The inlet 

and discharge boundary conditions are applied at axial stations some distance 

upstream and downstream of the blade rows. The selected boundary conditions 

assume subsonic axial velocity at both stations, but admit either choked or 

unchoked operation of the blade row or stage. In the case of a single blade 

row, or the equivalent infinite cascade on a blade-to-blade stream surface, 

it is immediately evident that the steady solution must possess a periodicity 

in the circumferential direction with a fundamental period of 2~r/N,, where N, 

is the number of blades in the row. (It is implicit that the inlet and dis- 

charge boundary conditions also admit this periodicity condition.) If the 

blade row is rotating these considerations also pertain in the rotating frame 

of reference. Thus the computational domain need only encompass that fraction 

of the flow annulus containing the flow through a single blade-to-blade passage. 

The locations of the boundaries of the blade-to-blade passages may be defined 

arbitrarily so long as their spacing corresponds to the blade pitch. Down- 

stream of the blade row the blade slipstreams represent natural boundaries of 

the blade-to-blade passages, since their spacing is identically the blade 

pitch, and certain components of the solution may be discontinuous across the 

slipstreams. Upstream of the blade row the boundaries have been conveniently 

defined as project ions of the mean camber 1 ines. 
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to the solution-within the domain at an earlier time. The cyclic procedure 

will be described in detail in a following section. 

The total pressure losses due to boundary layers on the blades will be 

carried in th-e wakes of the blades. Thus, a significant contribution to the 

unsteady aerodynamic interaction between blade rows and resulting acoustic 

signals may be attributable to passage of one row through the viscous wakes 

of the other row. Accordingly, an approximate representation of the boundary 

layers on the blade surfaces and the blade wakes is also incorporated in the 

present model. The considered viscous effects include reduction of the blade- 

to-blade passage area due to the boundary layer displacement thickness and 

turbulent diffusion of the corresponding momentum defect (i.e., total pressure 

loss) in the wake. 

INVISCID FLOW ANALYSIS 

Fundamental System of Equations 

The basic system of equations from which the present flow representation 

derives consists of the statements of conservation of mass; 

aP 
at + v.pi7 = 0 

conservation of momentum; 

D3 VP 
Dt+p= 

0 

and conservation of energy; 

De 
Dt + ‘Dt p 

D (1) = 0 

where : 

D  a 
Dt=at 

+ 60 

(1) 

(2) 

(3) 

(4) 

Assumption Of an inviscid gas is implied by the absence of shear stress and 

heat conduction terms in Equations (2) and (3). In addition, a thermally 

and calorically perfect gas is assumed, for which: 

4 



P = pRT 

The energy equation can be stated in a somewhat more convenient form through 

combination of Equations (l), (2) and (3); 

aPE 
at + V-$?H = 0 

where: 

E = e + 3 V2 

,, = h + ; “’ 

h = e + p/p 

(7) 

(8) 

(9) 

(10) 

Furthermore, Equation (3) can also be written as: 

OS= 0 
Dt (11) 

where: 

P = kpy exp(S/Cv) (12) 

An important distinction between Equations (7) and f3)or (11) should, however, 

be recognized. Equation (7) is in divergency or “conservation law” form, 

whereas Equations (3) and (11) are in a non-conservative form. The divergency 

or “conservation law” form of the equation may be applied across a shock wave, 

but the non-conservative form can not. 

The only essential simplifications to this system of equations which are 

introduced in the following development of the flow model are a reduction in 

spatial dimensions of the problem from the general three-dimensional form 

used above to a particular two-dimensional form, and use of small disturbance 

approximations in the acoustic far-field of the machine. Derivation of the two- 

dimensional system is outlined below; discussion of the acoustic solution is 

presented in Volume III. 



Absolute Stream Surface Equations 

Consider a flow annulus as sketched in Figure (2). The curvilinear dis- 

tance along the intersection of the mid-line of the annulus with a meridional 

plane is denoted by m, termed the meridional distance. The distance normal to 

the mid-line in a meridional plane is denoted by n. The circumferential coordi- 

nate H is considered positive in the counter-clockwise direction when viewed 

down the positive z axis. The thickness of the annulus b is assumed to be 

small compared to the radius r; hence the n component of the velocity vector 

and all variations in the n direction are neglected. Accordingly, the annulus 

is termed a stream surface. Transformation of a system of equations of the 

above form to the considered two-dimensional coordinate system is outlined in 

Reference (12). Application of the same procedures to Equations (I). (2) and 

(7) yields: 

gL+ 
irVmH 

& (,.VmH) + + & (c>V,H) + rb 
drb 
F=n 

Equation (II) transforms to: 

Equations (13) and (16) are in conservation form. Equations (14) and (IS) 

can also be cast in this form by multiplying them by I, and substituting Equa- 

tion (13): 

(13) 

(1’1) 

(15) 

(16) 

(17) 

(18) 

6 
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VV 
m 8 dr 

O-G r (19) 

Thus, the statements of conservation of mass, momentum and energy qiven 

by Equations (131, (18), (19) and (16) constitute the conservative form of 

the governing system of equations, and Equations (13). (14), (IS) and (17) 

represent the non-conservative form of the same system of equations. The con- 

servative form will be used in the interior of the computational domain, 

whereas the non-conservative form wi II prove to be more convenient to employ 

at the boundaries. 

Relative Stream Surface Equations 

In the analysis of the flow through a rotating blade row it is advantageous 

to express the governing equations in a relative coordinate system which rotates 

with the blades. Therefore, the following additional coordinate transformation 

is introduced: 

t = t 

x = m 

Y = r (H-:it) at x=co”5ta”t 

and the velocity components in the x,y.t system are correspondinqly defined: 

A relative total rnthalpy” and relative total energy are defined as: 

H = H - ‘.rV 
Fi 

:‘Note that the “relative total enthalpy” defined herein is sometimes referred 
to as “rothalpy” since it is not the total enthalpy which would be measured 
in the rotating frame of reference. However , it is a quantity which is con- 
served along streamlines in a steady rotating flow, and in this respect it is 
analogous to the conventional total enthalpy in an absolute frame. 

8 

(23) 

(241 

(25) 



ES = H' - p/p (26) 

The following system of equations, expressed in both conservative and non- 

conservative forms is thereby obtained: 

Continuity 

ap +apu +i%?L= PU drb 
at ax ay -xx- 

Streamwise Momentum 

apu at+ a bu2+p) 
ax 

+ apuv - _ & drb 
w rb r 

+ p(v+i&. dr 
i-x 

au au au 1 ap ;ii + UYjy + "qy = - p ax + (v+ar) 2 1 dr 
; x 

(27) 

(28a) 

(28b) 

Circumferential (Angular) Momentum 

w. 
at 

apUV+ puv drb _-__ 
ax 

abv2+p) = 
ay rb dx 

pu(v+mr) 1 dr 
rx (29a) 

or, 

av 1 ap --- 
at 

+“av + 3” 
ax "au = - P ay 

u(v+2nr) 1 d#- r a;; 

Energy 

apE+ apuH 
ax+ 

apVH PUH ' drb -= -- 
at w  rb r 

or, 

It is pointed out parenthetically that the above system of equations can be 

applied in the relative (rotating) frame as stated, or in an absolute (sta- 

tionary) frame by setting PO and dropping the prime superscript on H and E. 

In addition, the standard two-dimensional equations of motion are recovered 

(29b) 

(3Oa) 

(30b) 
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The lateral boundaries of domains 4, 6 and 7 are the instantaneous loca- 

tions of the blade slipstreams, Rs(m,t). Each domain is mapped from its shape 

in physical space into a unit square by defining stretched meridional and cir- 

cumferential coordinates, a and v, given (in an absolute reference frame) by: 

m-mi 
th 

u = 
-illi 

(in the i domain) 
mi+l 

(31) 

e-e9. 

” = R 
” ‘p. 

(32) 

where mi refers to the location of the upstream boundary of the i 
th 

domain, as 

measured on the stream surface from an arbitrary axial station. The location 

of the upstream boundary of domain 1, m,, and the location of the downstream 

boundary of domain 7, m8, can be selected arbitrarily. However, m 3’ m4’ m5 
and mb are necessarily the planes of the leading and trailing edges of the 

first and second blade rows. The locations m2 and m 7 are defined to lie one 

chord length upstream and downstream of the first and second blade row, re- 

spectively: 

m2 
= 2m 3 - m4 (33) 

m7 
= 2mb - 

m5 (34) 

If m2 and m 7 are selected as the inlet and discharge stations at which the 

boundary conditions are to be applied, domains 1 and 7 are not used. Other- 

wise m, and m8 represent the inlet and discharge stations, respectively. 

Transformation of Variables to ComDutational Domains 

The relative upper and lower boundaries of the domains, y, and y,, are 

functions of meridional distance, x, and may be functions of time, as well, in 

domains 4, 6 and 7 where they represent the instantaneous slipstream contours. 

Thus, the final transformation from physical space (x,y,t) (relative or absolute) 

to computational space (u,v,T) is defined by: 

T = t aoIL 

x-xi 
iT = 

‘i+l-‘i 

(35) 

(36) 



Y-Y% 
V 

= Y,-Y& 

a ar a av a a 

ar= atYz+atav=L 
O [& -,> &] 

V 

a a0 a av d 1 
ax= ax~+5ixT=x, 

[& - g a, 
v av 

(39) 

a av a 1 a 
~=YqTG=y,av 

where : 
ay” y,=v,,, a yQ 

(1-v) r (41) 

Yv = (Yu-YR) (42) 

X = 
u 

b i+lmxi ) (43) 

ay” 
y,=vaa+ 

a YE  
(1-v) ao (44) 

and : 

xi = mi (45) 

Y, = r eu at x=constant (46) 

Yg = r 8 II at x=constant (47) 

L is an arbitrary reference length and a is a reference speed of sound. In 
0 

addition, a reference pressure p o will be introduced below to complete the 

non-dimensionalization of variables. Particular vaiues for L, a0 and p, w ill 

be assigned later. It should be noted that u and v are non-orthogonal coordi- 

nates. The transformation is non-singular for xcy, # 0. 

The correspondence between the physical and computational domains is indi- 

cated schematically in Figure (4). Within the computational domain Equations 

13 
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(40) 
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(271, Wa), (29a) and (30a) are expressed concisely by: 

(48) 

where 

a2 
e = 0 

P- x 
pO 

1 

(u+p/p u) /a 
0 

v/a 
0 

va 
9 

0 = p-x 
PO 

1 

u/a0 

v/a 
0 

1 

(u/so) 

(V+p/pv) /a 
0 

H’/a2 
0 

PuaoL 
h = -- 

_ p* 

and 

1 

u/a0 

v/a 

’ ; 
H  /a0 

a2L 
+pdr 0 

rdxp x 
0 

0 
2 2 (v+Qt-) /a 

; -u(v+2Qr) /a0 

0 

(49) 

(501 

(51) 

(52) 

(531 

(54) 

15 



c T - LY, 
XoYv. 

.. .’ (55) 

D r L (56) 
yv 

Note that f=f(e), g=g(e) and h=h(e,r,b,Q) thus f, g, and h are known functions 

of the basic dependent variables contained in e. 

The above form of the governing equations is used at all interior grid 

points, as will be outlined in the following section. The non-conservative 

form, i .e., Equations (27), (28b), (29b) and (30b), is employed at the boundary 

points in local orthogonal coordinate systems which will be discussed in con- 

nection with the boundary conditions and boundary point solution algorithms. 

Interior Point Solution Algorithm 

Each of the seven (7) computational domains is spanned by a rectangular 

grid network, having a mesh size of Au by Av: 

Aa = l/(JS-2) 

Av = l/(KS-4) 

The coordinates of the grid points are given by: 

(57) 

(58) 

u. 
J 

= (j-2) Aa j = 1,2,3... JS, JS+l 

‘k = (k-4) Av k = 4,5,6...Ks 

In addition, time is advanced in increments of AT: 

‘i = (i-l) AT i = 1,2,3...~ 

where the value of AT is determined by a combination of stability and gee- 

metric constraints which wi 11 be discussed later. The upper limit on the 

time counter i is not generally known a priori, but it should be sufficiently 

large that an asymptotic solution is attained. 

(59) 

(60) 

(61) 
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The.same values of JS and KS are used in all seven domains. The grid 

columns j=2 and JS correspond to the axial boundaries m=mi and nii+,. The 

columns j=l and JS+l overlap into the adjacent domains and are used to patch 

the solutions together. At the inlet station (which may be either m, or m2) 

the grid column j=2 is composed of boundary points (to be discussed.later) and 

the column j=l is unused. Correspondingly, at the discharge stati.on (either 

m7 8 or m  ) the grid column j=JS is composed of boundary points and the column 

JS+l is unused. 

The grid rows k=4 and KS correspond to the circumferential boundaries of 

the blade-to-blade passage EJ=~~ and Bu. The grid rows k = 1,2 and,3 and 

k = KS+l, KS+2 and KS+3 are exterior to the computational domain and are re- 

served for the solution in portions of the adjacent blade-to-blade passages 

given by: 

vk = (k-3) Av k = 1 ,2 and 3 

‘k = (k-5) Av k = KS+l, KS+2 and KS+3 

Thus, i t can be seen in Figure (5) that the rows k=3 and 4 occupy the same 1 o- 

cations on the transformed boundary v=O. The rows k = KS and KS+1 correspond- 

ingly occupy the same boundary v=l. On the slipstreams these points also oc- 

cu~y the same physical locations. This convention was adopted in view of the 

anticipated double-valued solutions which will pertain to each side of the 

blade slipstreams which form the circumferential boundaries of domains 4, 6 
and 7. On the blades, the row k=3 occupies a position corresponding to k=KS, 

and 4 to KS+l, as indicated in Figure (5). 

The finite-difference algorithm developed by MacCormack 13 is employed to 

carry out the 

on the follow 

solution at the interior grid points. This algorithm is based 

ing second-order approximation to the time derivative 

e i+l,j,k = ei,j,k + @  ) A-r 
i ,j ,k 

(64) 

where the subscripts i,j,k refer to the discrete values of ‘I, u, and v de- 

fined by Equations (59), (60) and (61), and the’su’perscript p indicates a 
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“provisional” (or “predictor”) value. The “provisional” values al 

in a first or “predictor” step: 

P 
ei+l ,j ,k = e. 

I ,j ,k 
+ ‘%I AT 

i,j,k 

Thus Equation (64) can be rewritten as: 

ei+l ,j ,k 
= AT> 

which constitutes the second or “corrector” step. 

it should be noted that the first or “predictor” step given : 

(65) can be carried out consistently with the initial value charal 

interior point solution, i.e., it only involves the known values t 

and spatial derivatives thereof at t ime ~~ as given by Equation (, 

the second or “corrector” step, Equation (66)) requires knowledge 

ary point values at time T i+1 to complete the evaluation of the SI 

tides at the points adjacent to the boundaries at time T~+~, The 

pract i ce , the interior point solution cannot be completed by this 

analogous two-step type algorithms without first completing the b, 

solutions, which will be discussed subsequently. It will be show 

boundary point algorithms used herein can be carried out entirely 

the known solution at 'i and therefore, in fact, are executed pri 

terior point algorithm. 

The MacCormack algorithm achieves satisfactory stabi 1 i ty wi i: 

tion of artificial damping terms or numerical filtering procedure 

of first-order, non-centered finfte-difference approximations to 

derivatives which alternate direction between the first and secc;r 

resulting solution is, however, considered to be second-order act 

space and time due to the combination of alternating direction di 
13 in the second or “corrector” step . For example, on the “predif: 

spatial derivative may be approximated by: 

(L& = 
f 

i,j,k 
- f i ,j-1 ,k 

: ,j,k AU 



Then on the corrector step 

(qp 
fp i+l ,j+l ,k - fp 

= i+l,j,k 

Ba i+l,j,k 
AU (67b) 

must be used. The same procedure applies to the u derivatives. Since the 

order in which the direction of the differences is evaluated is arbitrary, 

it may be cyclically rotated to avoid imposing a preferential bias in the so- 

lution. The rotation algorithm is illustrated in Table I. The central grid 

. TABLE I 

ROTATION ALGORITHM FOR SPATIAL 

DERIVATIVE EVALUATION 

Time Step Iterate u Derivative Indices v Derivative Indices 

. 

. 

i 1 

i 2 

i+l 1 

i+l 2 

i+2 1 

i+2 2 

i+3 1 

i+3 2 

. 

j+l, j 
j, j-l 

j+l, j 
j, j-1 
j, j-1 

j+l, j 
j, j-1 

j+l, j 

k+l, k 

k, k-l 

k, k-l 

k+l, k 

k, k-l 

k+l, k 

k+l, k 

k, k-l 

point is the j,k point in all cases; thus the circumferential position index 

maintained in evaluation of the u derivative is understood to be k, and the 

streamwise position index maintained in evaluation of the u derivative is 

understood to be j. Note that during any time step, combination of the first 

and second terates produces a time-split central difference, e.g.: 

i ,j ,k 

fp i+l , j+l ,k 
- fp 

i+.l ,j,k 
+f 

) = i,j,k 
- f 

2Ao 
i ,-i-l ,k (68) 
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MacCormack 14 has indicated that cyclic rotation should enhance the 

stability of the system. However, in the authors experience it has also been 

found 

press U 

stabi 1 

t ions 

tion. 

I for 

to amplify numerical oscillations i’n the vicinity of a, shock wave (i.e., 

re undershoots and overshoots). The latter phenomenon is not an in- 

ity.in the usual numerical sense, but. rather ampl,i,fication of osci 1 la- 

associated with representation of a discontinuity by a continuous func- 

For this reason, the option to not use the combinations shown in Table 

S t 

discret i 
. 

In 

upper 1 i 

eps i+l, i+2 and i+3 has been retained in the computer code, at-the 

on of the user. 
_~ ,. , _ 

reference to convergence and stability, the CFL criteria places an 

mit on the permissible ti.me step: 

I 

A0 AT < min [(---& x ( 
ao(x. I+1 - Xi) 

1, (g-$x( 
ao(~u-~I1) 

- L L 11 

The application of boundary conditions in the case of unequal numbers of blades 

in the two blade rows (which will be discussed later) is based on a phase lag 

in time. Implementation of the phase relations requires a constant value of 

AT; therefore an estimate of the maximum anticipated values of u+a and v+a 

must be made to determine the allowable step size AT. In addition, the value 

must then be reduced such that the time for one blade of the second row to 

cross a single passage of the first row is an integer number of time steps. 

(The latter constraint obviously does not apply when only a single row is con- 

sidered.) 

Inlet and Discharge Boundary Conditions 

and Boundary Point Solution Algorithm 

The present formulation assumes that the periodicity of the flow field 

results entirely from the interaction of the rotor and stator blade rows. Ac- 
. ..., , ( :I.,. 

cordingly,5’any’ nonuniformity, either spatial or timeyi.se, of the properties 

of the flow crossing the inlet or discharge station attributable to inward 

travelling waves or inward convection must be ruled out, since its existence 

would add unsteady components to the flow which are not accounted for by the 

blade row interaction model. Identification of the flow. properties which 

propagate by convection and by wave motion is facilitated by recasting the 

21 



system of equations in characteristic form. 

The characteristic surfaces formed by the hyperbolic system of partial 

differential equations given by Equations (27) through (30) consist of a conoid 

with its base on the x,y plane and within it a stream path which intersects the 

conoid at its vertex. If the vertex is placed at a grid point at t ime t+At, 

the base covers the domain of dependence of the point at t ime t. A particularly 

useful approximation to the true characteristic form is obtained by stating 

the system of equations in a reference plane coordinate system which reduces 

the problem to a more tractable two-dimensional (i.e., t ime and distance) form. 

If the reference plane is normal to both the x,y plane (t=constant) and the in- 

let station (x=constant) and is allowed to translate in the y direction at the 

same velocity as the circumferential component of gas velocity, v, then (as 

will be shown) the system of characteristic lines illustrated in Figure (6) is 

obtained. The lines A0 and CO approximate the intersection of the reference 

plane and the true characteristic conoid, and can be interpreted as paths of 

downstream and upstream travelling waves. The line BO is the stream path, 

which also 1 ies in 

It is a Is0 po 

plane at the veloc 

the reference plane. 

nted out parenthetically that translation of the reference 

ty v in effect transforms a rotating frame of reference 

back to an absolute frame. Thus, the inlet and discharge stat 

are effectively carried out in an absolute frame regardless of 

motion of the computational domains, and the numerical results 

independent of this transformation. 

ion solutions 

the relative 

are entirely 

Those characteristic lines which originate outside the computational do- 

main at time t and intersect a boundary point at t ime t+At each represent at 

least one equation which must be replaced by a boundary condition to render a 

determinate solution at the boundary point. Obviously, a subsonic axial Mach 

number, i .e., (u-a) < 0, has been assumed in the construction of line CO in 

Figure (6). Should the axial Mach number at the inlet be supersonic, all 

characteristics would originate outside the computational domain, and accord- 

ingly the complete solution at this boundary could be specified as a boundary 

condition. Correspondingly, a supersonic axial Mach number at the discharge 

station would imply that no characteristics originate outside the computational 
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domain and, therefore, no boundary condition can be specified. The present 

analysis is formulated with respect to subsonic axial Mach numbers, hut con- 

sideration of supersonic axial flow clearly requires only a.minor variation 

of the solution algorithm. In this case, specification of three (3) boundary 

conditions at the inlet will be required (one to replace the wave motion char- 

acteristic A0 and two to replace stream path characteristics on BO). At the 

discharge station one (1) boundary condition wi 11 be required to replace the 

wave motion characteristic on CO. Derivation and discussion of the character- 

istic relations and boundary point solution algorithms follows. 

(a) Stream Path Characteristics - The energy equation as given by Equa- 

tion (11) is already in characteristic form; it can be integrated to yield 

(in terms of the two-dimensional system given by Equations 20 to 24) : 

S constant 
dx = on dy - = _ = dt 

U V  
(70) 

Equation (70) states the well known fact that in unsteady flows entropy is 

convected on stream paths. It is evident that the entropy convects inward 

(assuming u > 0) across the inlet station and outward across the discharge 

stat ion. The condition S = constant everywhere upstream of the inlet station 

forms the first boundary condition to be applied at the inlet.” 

The momentum equation, Equation (2)) can be rewri tten in terms of the gra- 

dients of total enthalpy and entropy rather than pressure: 

(71) 

If VS = 0, as at the inlet, then the curl of Equation (71) gives the vorticity 

transport equation: 

a; 
at + vx (Gx3, = 0 . 

(72). 

- 
“The value of the entropy at the inlet could, of course, be increased by upstream 

travel 1 ing shock waves. However , it is assumed that any shock waves reaching 
the inlet station are sufficiently weak to be considered isentropic. 
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where the vorticity vector is defined by z = VXK 

Equation (72) can be expanded and combined with the continuity equation, 

Equation (l), to obtain:” 

(73) 

In terms of the presently considered two-dimensional system given by Equations 

(20) through (24);the only non-zero component of vorticity is the normal com- 

ly, Equation (73) reduces, to: ponent 5 = (av/Bx - au/By). Accord i ng 

6 ‘;) = 0 

or 

I = constant on dx = 
D u 

+ = dt 

(74) 

(75) 

Thus, it can be seen that tk ratio of vorticity to density also convects on 
J- 

stream paths. The condition 5 = 0 upstream of the inlet station is taken as 

the second boundary condition to be applied at the inlet station. 

To summarize, Equations (70) through (75) apply on the stream path char- 

acteristic, line BO in Figure (6)) and have been replaced by the boundary con- 

dition S = constant and 5 = 0. 

(b) Wave Motion Characteristics - The equation of state, Equation (12) can 

be differentiated with respect to time using the convective operator: 

1 k,, 1 DP + 1 DS 
P Dt P Dt Cv Dt 

(76) 

*Inf!‘t& present context this result is restricted to conditions for which 
aS/ay = 0, e.g., at the inlet station. It can also be proven for barotropic 
and constant density fluids. 
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The continuity equation, Equation (27), and the energy equation, Equation (sob), 

can be substituted into the above relation, and the streamwise momentum equation, 

Equation (28b), then added to and subtracted from the result to obtain: 

a 
VP 

Iap at 
+ (u+a) ap + 

ax 
v I!!$ + [$ + (u&a) g + v $1 

(77) 
= - a (* + 

ay 
.$ p) f (v+Qr)2 + $ 

or 

- = dy = dt dx on ufa V 
(33) 

where Q  1 and Q 2 
are identified as the terms appearing on the right hand side of 

Equation (77) D Equation (78) applies on the characteristic lines originating 

at points A and C at time t which intersect the boundary point 0 at time t+At 

in Figure (6). The set of equations represented by Equation (78) are commonly 

referred to as the compatibility relations. The member of the set with the + 

sign applies on the line A0 at the inlet and will be replaced by an inlet bcundary 

condition. The member of the set with the - sign applies on the line CO at the 

discharge station and will also be replaced by a boundary condition. Appl ica- 

tion of the compatibility relations on line CO at the inlet station and line A0 

at the discharge station to complete the boundary point solution algorithms 

will also be outlined below. 

(c) Model1 ing of Duct Boundary Conditions - As indicated above in connec- 

tion with the stream path description, it is assumed that S = 0 and 5 = 0 at 

the inlet. Th.ese conditions derive from the convective character of Equations 

(70) and (75) and are independent of the physical structure of the inlet duct. 

On the other hand, the propagation of waves across the inlet or discharge sta- 

tion is dependent on the configration of the duct, as is well known from 

acoustic theory which ascribes impedance functions to the geometric and ma- 

terial properties of the duct. (Since the present modei neglects the radial- -’ 

velocity component, radial wave modes and wall impedance properties are cor- 

respondingly assumed to be absent.) 

Two li 

figuration 

i.e., the i 
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mi ting cases have been considered to be descriptive of the duct con- 

at the inlet or d ischarge station. One case is an infinite duct. 

nlet or discharge station is located in a region of constant cross- 



sectional area which extends “very far” outward from the inlet or discharge sta- 

t i on’; Consequently, all outward radiating waves should pass the inlet or dis-. 

charge station without reflection in this case, and continue travel 1 ing outward 

“forever” on the time scale of the problem. No reflected waves from x + + m  - 
should ever reach the computational domain. 

The second case represents the opposite 1 imit in which al 1 pressure waves 

are reflected at the inlet or discharge station; this case is termed an open- 

end duct since it corresponds to the type of reflection associated with the 

open-end of an organ pipe. The boundary condition is that the pressure matches 

the plenum pressure outside the duct, namely: 

‘inlet (Y,d = P-, (79) 

(80) 

where the subscripts +” denote x>xdischarge and x<xinlet respectively. 

Modell ing of the non-reflective condition for an infinite duct is some- 

what more complex, particularly in regard to the swirling waves produced by a 

rotor-stator interaction. A precise mathematical formulation of the flow field 

solution upstream of the inlet station and downstream of the discharge station 

based on a small-perturbation analysis is described in Volume III of this report, 

and is herein referred to as the acoustic far-field model for an infinite duct. 

It accompl’ishes the desired objective of allowing an arbitrary transient siqnal 

to radiate outward without reflection and asymptotic attainment of a periodic 

solution with as many harmonic components as can be derived from the number IIf 

grid points spanning the considered boundaries. However , an approximate model 

of the infinite duct condition has also been developed which does not require 

use of the acoustic.,far-field analysis.. In the approximate model, the infinite 

duct conditions are derived from the wave-motion characteristics represented 

by Equati-on (78). Consequently, the discrete acoustic modes are not explicitly 

identified in the approximate model, and their unimpeded transmission across 

the boundary cannot be guaranteed. In the approximate infinite duct model, 

Equation (78) is integrated to yield: 
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2a&‘= 
v-1 - 

(-aQ, + Q2) dt + constant 

(81) 

on dx dy - = - = dt 
u+a V - 

where S = constant along the wave path is assumed. Outside the computational 

domain r = constant and b = constant is assumed. The remaining term in the 

integrand of Equation (81), namely a av/ay, accounts for the two-dimensionality 

of the actual wave surfaces, as compared to the one-dimensional (helical) sur- 

faces which would result if the swirl component of velocity, v, were constant 

or only a function of x. If av/ay is neglected outside the computational domain, 

then the well-known Riemann invariants for the incoming waves are obtained from 

Equation (81): 

(JaY!:7t’ 

2a 
+ ’ (Y,t))inlet = ~ + ‘-00 

(2a (y,t) 
y-1 - U (Y,t))discharge = y-l - Urn 

In this case the subscripts denote the specified values for x + + m, i.e., the - 
“ends” of the infinite duct. The two-dimensionality of the outward radiating 

waves at the inlet or discharge station is retained by evaluating the inte- 

grand of Equation (81) numerically: 

t+A t 
2a+U= 2a+ + 
y-l - ( y-l - u) 2 5 

(-aQ, + Q,) dt 

t 

where: 

X = x - (u+a) At 
a - 
C z 

Some distortion of the swirling waves at the inlet and discharge bound- 

aries can be expected to result from the above model of infinite duct boundary 

conditions, due to the representation of the incoming waves by the Riemann 

invariants for a one-dimensional unsteady flow. The severity of the distortion 

will depend on the relative strengths of the two wave systems and, therefore, 

should not be serious since the outgoing waves (which produce the swirl) are 

described by a*two-dimensional system of equations. In no event should this 

(84) 

(85) 
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model generate the standing waves associated with an open duct condition, but 

neither can it be expected to duplicate the perfect wave transmission of the 

acoustic far-field model described in Volume III of this report. Therefore, 

the approximate infinite duct boundary conditions are considered to offer a 

useful analytical tool for analysis of the aerodynamic performance of inter- 

acting blade rows without invoking the additional computational complexity of 

the acoustic far-field analysis. 

(d) Circumferential Velocity Solution - The determination of the swirl .-__ ~---- 
component of velocity at the boundary points at time t+At can be accomplished 

by use of the circumferential component of Equation (71): 

, 
av aH -+ at = - ay T $ - UC 

. 
(86) 

Equation (86) pertains to the flow normal to the reference plane in which the 

wave paths have been identified above. Thus, the swirl component of velocity 

does not exhibit a wave-like behavior in this formulation. Furthermore, Equa- 

tion (86) does not involve any streamwise gradients (if 5 is known) and can, 

therefore, be evaluated along the inlet or discharge boundary by the same finite 

difference algorithm employed at the interior points. The swirl component of 

velocity is, of course, implicitly coupled to the axial component and to the 

pressure through the gradient of total enthalpy aH*/ay (even when S = 5 = 0). 

(e) Inlet- Solution Algorithm - The inlet solution algorithm consists of 

the stated boundary conditions, namely: S = constant, 5 

P --co = constant (open duct) or 2amm/(y-1) +-z-_ 
-m = 0, and either 

= constant (infinite duct), to- 

gether with the compatibility equation on the upstream wave, line CO in Figure 

(6)) given by Equation (78) and the circumferential momentum equation given by 

Equation (86). (This combination of 3 boundary conditions and 2 equations may 

appear redundant since there are only 4 dependent variables, however, the condi- 

tion <-, = ” lE! ’ b “i’s a Neumann type boundary condition which only serves to allow 

solution of Equation (86) without knowledge of streamwise derivatives.) 

The boundary condition Ssm = constant is enforced by requiring that two 

thermodynamic properties of the inlet flow which define the entropy be speci- 

fied, e.g., Sem = Cv log (p-,/kpy,) = constant. Since the open duct condition 

requires specification of p -co and the infinite duct condition requires a -cm’ 
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these two variables have been selected to define SmoJ = 0 and, therefore, k = 
(a’, p~~-lvY y-‘)Y, in both cases. 

The solution algorithms for the open duct and for the infinite duct inlets 

are summarized as follows: 

(1) Open-End Inlet Duct_ - The values of amoo and pi, are specified, and 

S = 5 -co -co = 0 is implied. this combination provides the values of p,p and e 

at the inlet: 

P = P -co (87) 

P = -vda~_ (88) 

e = P/uy-lhd (39) 

The axial velocity is obtained from the integrated form of the compatibility 

relation, Equation (84)) on the upstream travelling wave: 

2 (a-at) 
U = u 

C  +o 
+ (aQ, + Q,) At 

C  

(90) 

where the characteristic point x 
c’ Yc is located relative to the boundary point 

x,y from: 

X = x - 
C  

(uc-ac) At ) 

Y, = Y - vcAt (91b) 

and the local sound speed is given by 

a2 = VP/P (92) 

The circumferential velocity component is obtained from finite-difference so- 

lution of Equation (86), using Swo3 = <-, = 0: 

, 
av aH -= -- 
at ay (93) 

(2) Infinite Duct Inlet - The values of a -co’ -co P and u -co are specified, 

and S = 5 -co -m = 0 is implied. In this case,the internal energy is obtained 
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from the speed of sound, using the compatibi 1 i ty relation (Equation (84)) 

on the upstream wave: 

e = + ( t a +a -,I + q h-,-y (aQ, + Qp) At) 
3 

*/(y(Y-1)) (94) 
C 

The axial velocity component is obtained from Equation (82): 

2 
U = 

y-l 
(a -m-a). + Uvm 

The pressure and density are given by: 

2-r 
y-l 

P = P -co (5) 
-co 

P = Yp 
a2 

(96) 

(97) 

The circumferential velocity component is again obtained from Equation (93). 

The pressure is a redundant member of the set of dependent variables, since 

it can always be obtained from the density and internal energy, i.e., p = (y-l)pe; 

however, it is carried in the above presentation of the inlet solution statement 

for clarity. 

The point xc, y 
C 

is located by iteration, using 1 inear interpolation to 

determine the flow properties at the point. A change in position of 0.1% is 

used as the convergence cri terion. In principle, the terms multiplied by At 

in Equations (YO), (Yla), (Ylb) and (94) should be replaced by the average of 

the values at point C and the new values at point 0; however, examination of 

the solution a posteriori indicates that the numerical error involved is too 

small to warrant the additional computational complexity. 

(f) Discharge Station Solution Algorithm - The considerations pertaining 

to formulation and statement of the discharge station boundary conditions and 

solution algorithms are similar to those outlined above. However, as indicated 

in Figure (6), points A and B originate within the computational domain, and 

point C falls outside. Therefore, the compatibility relation pertaining to 
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point C is replaced by a boundary condition given by either Equation (80) or 

(83). Equation (70) is evaluated on the stream path B in this case, using 

ons and so lution 1 inear interpolation. The discharge station boundary conditi 

a lgorithm are summarized by: 

(1) Open-End Discharge Due-t - Value of p, is specified. 

U =(J - 
a +q- (a-a,) + (-aQ1 + Q,) At 

a 

P = Pb bhb) “’ 

e = p/((Y-l)P) 

(98) 

(99) 

(100) 

(101) 

(2) Infinite Discharge Duct - Values of am and u co are specified. 

2 
e'= + (aa + am)+ y (ua-um+ (-aQ, + Q,) At) J /h(Y--1)) (102) 

L a 

U = --$f (a-am) + um 

1 /Y 
- (Y/Y’1 ) 

“h = P - i 1 2 
“ha 

P = yp/a* 

In both cases, the c i rcumferen t i al veloc ity component is given by: 

(103) 

c 
av aH 
at=-ay+T 

as 
av - ur; 

and the characteristic point xa, y a is located with respect to the discharge 

boundary point x,y from: 

. (‘136) 

x =x a - ba + aa) At 
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Y, = Y - vaA t (108) 

Equations (99) and (104) utilize Equation (TO), i.e., S = Sb 

Equation (106) is carried out using a first order upstream d 

j, j-l) to evaluate the u derivatives necessary to compute 5 

points. 

I, 

. Solution of 

i fference (i .e., 

at the boundary 

Blade Surface and Slipstream Boundary 

Conditions and Solution Algorithm 

(a) Blade- Surface Boundary Conditions - The boundary condition at the 

blade surface is simply impermeability of the surface, which requires that the 

component of velocity normal to the surface vanish. The blades are assumed to 

he thin and have sharp leading and trailing edges, as is typical of high speed 

compressor and fan blades. Therefore, the Kutta condition which requires the 

pressure to he continuous and finite at the trailing edge, is applicable. This 

also imp1 ies that the slipstream (i.e., vortex sheet) which emanates from the 

blade must originate at the trailing edge. Since the blade leading edge is 

sharp, and the incidence angles are not expected to be large, the streamline 

which wets the blade surface is assumed to intersect the leading edge. Accord- 

ingly, the leading edge pressure is also required to be finite, hut not continuous. 

(h) Slipstream Boundary Conditions - The boundary conditions pertaining 

to the slipstream are similar to those for the blade surface in that the slip- 

stream is impermeable, but are dissimilar in that the slipstream is non-rigid. 

It can he shown from application of the conservation form of the governing equa- 

tions at an impermeable contact surface that the pressure must be continuous 

across the slipstream, and that the component of velocity normal to the slip- 

stream surface must also be continuous and equal to the surface velocity. 

(Thus in a frame of reference moving with the surface the normal component of 

veloc ty must vanish at the surface.) However, the tangential component of 

veloc ty may be discontinuous across the slipstream, as well as the density or 

other thermodynamic properties. These jumps (discontinuities) in flow proper- 

ties result from unsteady variations in the work performed by the blades, or by 

differences in shock,-produced losses on either side of the blade under steady 

conditions, for example. It is emphasized that the conservation form of the 
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equations admit the existence of these jumps across a slipstream, but their 

magnitudes are not derivable from application of the conservation form of the 

governing equations to a surface of discontinuity. By contrast, the magn i tude 

of the jumps across a shock wave derive from the Rankine-Hugoniot relations. 

Therefore, the slipstreams cannot be expected to evolve from a finite difference 

solution of the governing equations in the same way that shock surfaces are 

“captured”. Consequently, if the slipstream jumps and the corresponding slip- 

stream motion are to be resolved accurately, the slipstreams must be explicitly 

recognized as surfaces of discontinuity, as they are in the present formulation. 

(c) Restatement of Governing Equations - The solution algorithms used at 

the blade surface and slipstriam points are closely related and, therefore, will be 

derived for the more general case of the slipstream points. The result wi 11 then 

be specialized to the blade surface points and the leading and trailing edge points. 

A surface-oriented coordinate system (x,;,t), as sketched in Figure (i’), 

is defined by: 

a 
ax= COSQ -5 - 

ai 
sin@ a 

6 

where x is the curvilinear distance along the surface, ‘y is the distance nor- 

mal to the surface, and Q, is the angle between x and x. The ve 1 oc i ty com- 

ponents 1 n this system (;,i) are correspondingly defined by: 

In th 

U = Los@ - Girt4 

V = usin+ + &OS@ , 

Js system, Equations (27)) (28b) ) (29b) and (job) become : 

(;09) 

(? 10) 

ap + ;;)p + 
at 

;ap+ - - 
ax 

(I [au + av 
G ax 6 

(111) 
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av 
at t. - a4 

“at 
. . 

+ U 
av 
ax 

+ V 
a; ;2 .' 

1 
z-R+; 

1 dr -- 
r dx (u (v+2Gt-) COST 

+ (v+fir)2 sin@) (114) 
.’ . . _/- ” 

ai 
at- 

- a+ - ai - ai ii 
v,t+uy+v-= 

1 ati 
ax aY 

+F+?- y-z-7 
P ax 

’ $ (u(v+2fir) sine 

- (v+Rr) 
2 

c-4) (115) 

- as s+u -+;g=(J 
ax w 

where 

Combination of Equations (113) and (116) and the equation of state yields: 

Equations (114) and (118) can then be combined to obtain a pair of compati- 

bil ity relations analogous to those previously discussed in connection with 

the inlet and discharge boundaries: 

+ (v+Rr)2 sin+)) 

or 

d; $ ff t dt = - aQ, + Q, On d; !%ie = 
; = ita dt 

(117) 

(118) 

(119) 

(120) 
.*_‘,. 

The variables Q,and Q, are defined by identifying the ,right hand side of Equa- 

tion (120) term by term with the right hand side of Equation (119). 

Implementation of the numerical solution of Equation (120) is facilitated 

by introduction of an additional coordinate transformation from the curvi- 

linear (x,;) system to a series of local C.artesian systems (5,n) each of which 

is tangent to a grid point on the slipstream (or blade surface). The (5,n) 

?6 



system is shown schematically in Figure (7). Note that in the (c,n) system, 

R-’ = &$/at = 0. The velocity components (;,;) at the grid point at which 
the ,local (c,n) system is defined are unchanged by this transformation; how- 

ever, their values at ‘adjacent grid points must be evaluated with respect to 

the angle $I at the subject grid point. The overal 1 effect of these transforma- 

tions is to make evaluation of Equation (120) closely approximate impingement 

of a one-dimensional acoustic wave on a surface which-is movjng at a velocity 

;. Although all two-dimensional terms are in ,fact retained, ‘they can be viewed 

as “correct ions ‘I to a more:familiar’one-dimensional solution. 

The boundary point algorithm is completed by stating the streamwise momentum 

equation and the energy equation in the curvilinear (x,7) system which follows 

a stream path,along the moving surface. The magnitude of the velocity vector 
. 

(121) 

along the surface is: 

2 23 
q = (; + i) 

The streamwise momentum equation is obtained by multiplying Equations (114) 

by ; and (115) by ; and adding: 

G lap. 
Dt = - p a; 

u (9r)2 dr 

i r dx 

where 

D a ;a + ;a = a 
Dt=at+ a; 

a; at + q+- 
as 

Equation (116) integrates exactly to: 

S constant d; dx = d; 
on := T= y = dt 

q U V 

(124) 

Equation (122 ) is not an exact integral, and, in contrast to the compatibil 
: , i ty 

relations, i.e., Equation (120), the integrand on the right hand side of Equa- 

tion (122) includes a leading term (the pressure’ gradient) which cannot be 

adeq,uately approximated by its initial value on the path of integration. Note, 

however , that Equation (30a) represents a ‘combination of the momentum and energy 

equations; therefore since Equation (30b) has been used to represent conserva- 

tion of energy, Equation (30a) can be u‘sed to represent conservation of momentum 

in lieu of Equation (122) . . Either form should be equivaient, but it will be 

(122) 

(123) 
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seen below’ that Equation (3Oa) offers an advantageous form for numerical 

evaluation. Equations (27) and (jOa) can be combined to yield: 

c , , 
aH 
at+ 

aH 
“ax + 

aH 1 ap 
VT = - P at 

In the present coordinate system this becomes 

DH’ 1 ap 
Dt- = P at 

where the convective derivative is defined above by Equation (123). In most 

applications for unsteady flows, Equation (126) is awkward to evaluate because 

the time derivative of pressure is not known a priori. However, in the pre- 

sent formulation, the pressure at time t, (p oint 0 in Figure 7) is determined 

from the solution of Equation (120), which is uncoupled from Equation (126) 

and, therefore, can be evaluated prior to (126). Thus, the term in question 

can be accurately approximated by: 

1 ap _ 2 (pO-pq) 

p at - (p,+p ) At 
q 

Accordingly, Equation (126) integrates to: 

H’ = constant + 
2 (PO-Pq) 

(Po+P ) q 

n Equation; (124) and (128) are determined by The constants indicated i 

evaluating S and H , respectively, at a distance A; = 4 At upstream of the point. 

Q  (in Figure 7). Although neither Equations (126) or (122) are exact integrals, 

as is Equation (124), the time derivative of pressure along line QO (in Figure 

7) can be more accurately represented than its spatial derivative at point ’ 

6 or E ‘(which must be interpolated). Numerical experimentation has shown 

that integration of Equation (126) yields correspondingly more accurate re- 

on dx = - dY = dt 
q U V  

(125’) 

(126) 

(127) 

(128) 
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sults than integration of Equation (122). 

(d) Blade Surface Solution Algorithm - Equations (120), (12.4) and (128) 

constitute the system of governing equations as applied on the blade surface 

and slipstream points. Therefore, with reference to the geometry indicated in 

Figure (7) , and reverting to the subscripts R and u to denote lower and upper 

boundary surfaces, respectively, the solution at a blade surface point 0 is given 

by: 

‘. ‘.. , 

VR = vu = 0 

log Pfi = log Pa - a r- (7 + (aQl + Q2)Atla 
a 

log P 
U 

= log pd + YL (v - (aQl - Q2)At)d 
ad 

SE = Sb or PR = Pb (P/Pb) 
l/Y 

l/Y 
c 

S = S or 
U e 

P, = P, (P/P,) 

# 
H; = Hb + 

2 (PQ-Ptq) 
( +e ) 

OE R 
9 

- = (2 (H; - -& 
UR 

t 

ti2r2)’ 

Hi = H, + 

2 (p,-P, ) 
(1 

(P+P 1 u u 
(1 

4 
U = (2 (Hi - + + Q2r2) 

U 

Determination of the total internal energy follows from the total enthalpy, 

(‘29) 

(l3Oa) 

(‘30b) 

(131a) 

(131b) 

(132a) 

(132b) 

(132~) 

(132d) 

i 
3::,.:, 
4; 

pressure and density by definition, c.f. Equation (26). 

,’ 

I 
(e) Slipstream Solution Algorithm - The solution at a slipstream point 

i: 
.;: is given by: 
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aalog pa+adlog pd-y(?ia 

log pL=log pu=log p = 

-‘,)-d (aQ1+Q2)a+ (aQ,-Q2jd)At 

(a,+a d) 

- - 
(Va+V 

a,-a 
v=v = 
R u d+( y -4 log p - $ log pa ad + y- log Pd + 

((aQ,+Q,) - (a+-cl21 ) At) 
a d 

SE = Sb or PI1 = Pb (P/P& 
l/Y 

S” = s or 
e P, = P, (P/P,) 

> > 
HI1 = Hb + 

2 (P-P,) 

(pQ+pR 
q 

ia = (2 (Hi - +q + Q2r2)’ 

Hi = He + 
2 (P-P,) 

(p,-p, 
r( 

= (2 (Hi - -& -f-) + n2r2)’ 

U  

2 2+ 
UR = (4, - ;,I 

I 

U 
U 

= (9; - ;:)‘, ;, _ 

The overal 1 procedure for imposing the boundary conditions along the blade 

surface and slipstream points is shown schematically in Figure (8). The time 

('33) 

(134) 

(135.3) 

(‘35b) 

(136a) 

(136b) 

(136~) 

(136d) 

(137a) 

(137b) 

axis projects vertically out of the page in this figure. The dashed 1 ines re- 

present the intersections of the reference planes and of the stream path with 

the axisymmetric stream surface (i.e., the x,y plane) during a time step At 
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(neglecting the motion of the slipstream during the interval At). The values 

obtained for ; on the slipstream are used to locate the new position of the 

slipstream for the next time step as follows: 

X = x n 0 
- (&in@) At .!138) 

Y, = Y, + (&OS@) At (139) 

where (x o, Y, (x0, t)) are the coordinates of the slipstream point at which 

the above described solution is obtained, and (xn, y,) are its new coordinates. 

Linear interpolation is then used to find the new y coordinate, y o (x0, t+At) 

of the intersection of the slipstream and the grid column located at x=x 
0’ 

which 

gives the new coordinates of the slipstream grid point at the next time step. 

(f) Trailing Edge and Leading Edge Points - At the trailing edge, the 

system given by Equations (129) through (132) is applicable subject to the 

constraint that p&=p,. This condition is satisfied by iterating the angle $I 

at the trailing edge, which, unlike the general blade surface and slipstream 

points, is not known a priori. The blade trailing edge is assumed to be sharp, 

but not necessari ly cusped; the angle $I is taken as a weighted combination of 

the blade surface angle and the slipstream angle, as shown schematically at 

points A and B in Figure (Ya). 

‘TE = kTE’slipstream + (lmkTE) ‘surface (140) 

(Values of kTE 
1 2 

in the range 2 5 kTE 5 7 have been found to provide satisfactory 

accuracy and stability of the trailing edge point solutions.) Therefore, the 

trailing edge point solution is carried out at points A and B like any other 

blade surface point solution, except that the slipstream angle is deflected 

until equal pressures (to within an error tolerance of 0.0001% of the mean 

pressure) are obtained on each side of the surface. The trailing edge and the 

slipstream emanating from it thus can be considered as together forming a con- 

tinuous deformable surface. Note, however, that one value of $TE will be ob- 

tained on the upper surface of the blade and a second value on the lower sur- 

face, if the trailing edge itself is not actually cusped. Therefore, the di rec- 
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tion of the velocity vector at the trailing edge is multiple-valued. Spe- 

cifically, 5 values of the.flow angle are identified. at 6 points having a 

common location; the trail,ing edge surface angles at points E and F, the 

mean angles at points A and B, and the (single) slipstream angle at points 

C and D. Since the Kutta condition requires the pressure to be continuous 

at the trailing edge, the change in pressure associated with the angular dif- 

ferences between these 6 points is neglected. Therefore, the solution is 

carried out at point A as indicated above, and then solutions are defined 

at points D and E which only differ from that obtained at point A in the 

direction assigned to the velocity vector. (i.e., the pressure, density and 

magnitude of the velocity vector at points A, D and E are equal. The direc- 

tions of the velocity vectors are parallel to the angle of each of these 3 

points.) The same procedure is used to carry out the solutions at points B, 

C and F. Note that velocity vectors obtained at points C and D are, there- 

fore, parallel but can differ in magnitude. The solutions at points A and B 

are used in the computations at interior points directly above and below the 

trailing edge, whereas the solutions at C and D are used to determine the 

slipstream point solutions downstream of the trailing edge, and those at 

Points E and F are used to carry out solutions at the blade surface points 

upstream of the trailing edge. 

The leading edge configuration is sketched in Figure (gb). In view of 

the singular character of a sharp leading edge, a somewhat more complex solu- 

tion procedure than employed at the trailing edge is necessary. A total of 

five flow angles, and a corresponding number of solutions, are again identi- 

fied at the leading edge. With reference to Figure (gb), the points A, B, C, 

D and E are all located at the same physical position, however, the flow angle 

at point A is the angle of the stream path intersecting the leading edge, and 

the flow angles at points B and C are a weighted combination of the surface 

angles of the upper and lower surfaces, respectively, and the stream path 

angle: 

‘LE = kLE ‘surface + (lmkLE) ‘stream path (141) 

(A value of k LE = 1.0, which makes the flow angles at points B and C tangent 

to the actual blade surface angles, has been found to be sat isfactory for very 
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slender blades, but kLE <l .O may be appropriate for other cases). The flow angles 

at points D and E are the mean of 41~~ and QI stream path. 

The leading edge solution procedure is begun by varying the stream path angle 

until the pressures at point A obtained from Equation (13Oa) and (130b) are 

matched (to within an error tolerance of 0.0001% of the mean pressure). As part 

of this step, the instantaneous locations of. the origins of the stream path and 

the wave characteristics intersecting the leading edge are determined. The solu- 

tion at point A is th’en completed using Equations (129),(131) and (132) in the 

same fashion as employed at any blade surface point. Note that ‘a s ing’ie-val ued’ 

solution will be obtained at point A. Next, pressures at points B and C are 

obtained from Equations (13Oa) and (130b) using the specified angles at these 

points (from Equation 141). Since points B and C are, in fact, coincident with 

point A, the solutions must have the same entropies 
* 

at any instant. The total en- 

thalpies are determined from Equations (132a) and (132c). Therefore, the 

densities and velocities at these points are found from the equation of state, 

the definition of total enthalpy and the specified angles. Finally, solutions 

at points D and E are obtained by averaging the pressure and magnitudes of the 

velocity vectors at points A and B and at points A and C, respectively. The 

directions of the velocity vectors are also averaged. The densities at these 

points are then calculated from the entropy at point A. 

Summarizing, at the leading edge a single value of the entropy and total enthalpy 

is obtained, but five values of the pressure, density and velocity vector are 

determined. The solution obtained at point A in Figure (9b) is subsequently 

used in computations at the interior grid point upstream of point A. The 

solutions at points B and C are used for the adjacent blade surface points on 

the upper and lower surfaces, respectively. The solution at point D is used in 

computations at the interior point above the leading edge, and that at point E 

for the interior point below the leading edge. 
,I .._, . . ; I I, 

*The possible existence of a shock wave at this point due to the flow deflection 
is neglected in this connection. The oblique shock entropy increase could, of 
course, be computed, if appropriate, by suitable modification of the code. 
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(g) Intersection of Slipstream and Discharge Boundary - Finally, special --. __ .-.... -.-.. - 

consideration must be given to the grid points at the intersections of the slip- 

streams and the discharge boundary, since these grid points lie on two boundaries 

of the computational domain. It should be emphasized in regard to these points 

that all the characteristic points (A, B, D and E in Figure 7) which influence 

a slipstream point (0 in Figure 7) lie upstream of the subject point (assuming 

; > 0). The numerical domain of dependence of a slipstream point, therefore, 

extends to the adjacent grid points only through the linear interpolations 

necessary to evaluate variables and derivatives at the characteristic points. 

This dependence represents the only mechanism by which those slipstream points 

which lie on the discharge boundary are affected by the discharge boundary con- 

ditions that are explicitly enforced at all other discharge boundary points. 

In connection with these same special slipstream points, it should be 

pointed out that if the slipstream angle $I at the discharge boundary becomes 

sufficiently:large (i.e., the included angle between the slipstream and dis- 

charge boundary is sufficiently acute) it is possible for the characteristic 

point to be located outside the computational domain. The physical meaning 

of this occurrence is that the slipstream solution explicitly depends on data 

downstream of the discharge boundary and, therefore, the boundaries of the 

computational domain do not encompass the numerical domain of dependence of 

the solution. Theoretically, this condition represents a limitation on the 

applicability of the present formulation. In practice, it represents an ex- 

treme condition which has thus far only been encountered during transient 

phases of a solution; use of linear extrapolation of data from the set of 

grid points adjacent to the discharge boundary to the characteristic point has 

proven successful in these instances, 

convergence criterion. 

al though it temporari ly violates the CFL 

Periodic ity Condition 

In the analysis of an isolated c 

in a uniform free stream, it is clear 

blade passage will be identical. The 

ircular (or infinite) cascade of blades 

that the solution for each blade-to- 

solution for the complete cascade in this 

case will be steady (in the frame of reference of the blades) and have an 

angular period of 2~r/N. Enforcement of this periodicity condition is straight- 
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forward; the solution on the exterior grid rows k=l, 2 and 3 (see Figure 5) 

can be equated to those on interior grid rows KS-2, KS-l and KS, and those on 

exterior rows k=KS+l , KS+2 and KS+3 can be equated to those on interior rows 

k=4, 5 and 6. It may be noted that in domains 1 and 2, grid rows 1 and 3 

and KS+1 and KS+3 are superfluous, since the lateral boundaries of these do- 

mains are in reality composed of ordinary interior points. However, the so- 

lutions on grid rows 1, 2 and 3 and KS+l, KS+2 and KS+3 are required to carry 

out the slipstream point solutions in domains 4, 6 and 7 as well as the blade 

leading and trailing edge point solutions. (Compare Figures 5 and 8.) 

In the more general case of a stage composed of interacting blade rows 

having unequal numbers of blades, the fundamental angular period of the com- 

plete cascade solution is 2r/AN, where AN is the difference in the number of 

blades. Furthermore, the flow pattern rotates with an angular velocity which 

is, in general, a multiple of the wheel speed. ” (In the special case of an 

equal number of blades the flow pattern rotates at “infinite” speed and the 

angular period 2n/N is reccvercd.) Numerical representation of the periodici ty 

condition pertaining to the conventional configuration, consisting of a pair 

of blade rows with the larger number of blades in the second row, has been ac- 

complished by formulation of a cyclic procedure for equating the solution on 

the exterior grid rows identified above (i.e., k=l, 2, 3 and KS+l, KS+2, KS+3) 

to that on corresponding interior rows (i.e., k=KS-2, KS-l, KS and 4, 5, 6) at 

an earlier time through a set of appropriate phase relations. The same pro- 

cedure is applied on the grid columns at the interface between domains 4 and 5. 

An illustration of the nature of the cyclic procedure devised to enforce 

the periodicity of the solution can be accomplished through use of the following 

simplified configuration. Consider first a stage having three rotor blades and 

three stator blades. For the present discussion, let the stator precede the 

rotor. This configuration is shown in Figure (lOa) in both axial and cascade 

project ions. At time to al 1 rotor and stator blades are aligned, whereas at 

time to+At the rotor has moved through a fraction of a revolution, and none 

of the blades are now aligned. It is clear in this case that the geometric 

boundary conditions (which determine the angular periodicity of the flow through 

the stage) are identical in each blade-to-blade passage at any time. Accordingly, 

the flow field in each passage should be identical, since none of the boundary 
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conditions distinguish one passage from the next. In this case the solution 

along an exterior grid row 6 can be equated to that along the interior grid 

line D and similarly that along exterior line a can be equated to that along 

interior line y, at any instant. Consider now the case with three blades in 

the stator and four blades in the rotor as shown in Figure (lob). At time t 
0 

rotor blade 2 is aligned with stator blade b, whereas at time to+At rotor blade 

3 is aligned with blade c. In this case the geometric conditions pertaining to 

the passage between blades a and b are obviously different from those for the 

passage between blades b and c at any time. However, it may be noted that I 

those pertaining to passage bc at to+At are precisely the same as those which 

pertained to passage ab at the previous time to. Therefore, the flow condi- 

tions along exterior grid line 6 at time to+At can be equated to those along 

interior grid line B at the earlier time t 
0’ 

However , in this case those along 

exterior grid line c1 at time to+At cannot be equated to those occurring in pas- 

sage ab at time t o, but must be equated to those occurring along line y at an 

earlier time. Thus, a phase shift is introduced in application of the lateral 

boundary condi tions. 

A similar procedure is used to define boundary values along the interface 

between domains 4 and 5. However, in this connection it is pointed out that 

sufficient data must be stored along this interface to provide information for 

a maximum period corresponding to the blade passing frequency of the first row 

(i.e., the row with the smal ler number of blades). During this period the 

relative angular positions of the two domains will shift by 2.rr/N,. In addition, 

domain 4 will itself span an arc of 2~r/N,; therefore data covering a total arc 

of 2(2~r/N,) must be available. The boundary data is stored for one blade-to- 

blade passage on either side of the central passage which forms the computational 

domain, i.e., a total of three passages. Thus, for domain 5 the stored data : 

spans the arc 3(2n/N2). An upper 1 imit on the ratio of number of blades re- 

sults, namely: 3/N 2 2 2/N, is required. The permissible number of blades in 

the second row is, therefore, bounded by: 

(142) 

The high speed fan configurations to be considered later in this report have 

stator to rotor ratios of the order of 1.05 and 1.12, which are within these 
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‘1 imits. Should the upper 1 imit prove restrictive for other configurations, the 

stored boundary data for the interface of domain 5 with domain 4 could be ex- 

tended to span an arc ~(~IT/N~), for example, by including two passages on 

either side of the central passage, which would increase the upper limit to 

N2/N, 2 5/2. Some modification of the computer program described in Volume 

II of this report would, however, be required. 

,‘A more detailed exposition of the development and application of the phased 

boundary conditions is contained in Appendix I of this report. In particular, 

it is demonstrated that the required boundary information from adjacent blade- 

torblade passages is generated as one passage of the first row crosses one 

blade of the second row, and that the desired periodicity is attained asymp- 

totically in time. 

Initial Conditions 

The initial conditions need be considered only to the extent that they bear 

on the asymptotic limit in time, since only the asymptotic solution is of 

interest. Several observations relative to this point should be emphasized: 

(a) The initial data is necessarily approximate, at best, since determina- 

tion of the exact solution is the objective of the calculation. The initial 

transient solution is associated with the difference between the initial data 

and the exact solution, and consequently the time needed to attain an asymp- 

totic solution may be expected to diminish as the accuracy of the initial data 

is improved. 

(b) The initial data can be approximate in the sense that it does not 

satisfy the boundary conditions, or it does not satisfy the governing equa- 

tions, or both. If the initial data does not satisfy the governing equations, 

the resulting transient solution has no physical relevance; only the asymptotic 

limit is meaningful. On the other hand, if the initial data satisfies the 

governing equations but does not satisfy the imposed boundary conditions (i.e., 

it satisfies some other set of boundary conditions) then the resulting tran- 

sient so.lution is physically relevant; it represents the response of the system 

to an impulsive change in boundary conditions. The computer program has not 
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been structured to handle such impulsive changes in’ boundary conditions, but 

the ability of the formulation to do so is simply pointed out. 

(c) As a consequence of the present formulation of inlet and discharge 

boundary cond i t i ons , existence of an asymptotic solution for arbitrary initial 

data or for arbitrary boundary conditions cannot be guaranteed. Obviously, 

it is possible to specify inconsistent boundary conditions, such as an unattain- 

ably high pressure ratio across a stage, or initial data that generate a tran- 

sient solution which violates certain underlying assumptions, such as u > 0 

at the inlet and discharge station. An asymptotic solution cannot be attained 

in such cases (i.e., the computer program “bombs”). However , this problem 

should not be any more disturbing than the failure to reach a stable operating 

point in an actual turbomachine due to surge, for example. In the present 

formulation, possible non-existence of an asymptotic solution is the penalty 

incurred by modelling as closely as possible the actual wave mechanics of the 

inlet and discharge flows without modell ing the entire starting process by 

which a stable operating point is reached. On the other hand, if existence of 

an asymptotic solution is demonstrated for a particular set of boundary condi- 

tions and initial data, then uniqueness of the numerical solution necessarily 

follows. If it were non-unique, the numerical solution would drift through 

an endless success ion of states, since each time step is a new initial value 

problem with a perturbation of the data provided by the round-off error. In 

other words, convergence of the solution guarantees its uniqueness. 

(d) It should be apparent from the preceding discussion that the initial 

data can bear on the existence of an asymptotic solution, but the extent to 

which an asymptotic solution depends on the initial data is more difficult to 

define. It is conjectured here, on the basis of experience thus far, that 

variations in the initial data within those bounds for which a solution exists 

have no effect on the asymptotic solution. It is clear that the solution at 

any instant during the transient oscillation through which the flow proceeds 

can be regarded as an initial condition leading to the same asymptotic solu- 

tion. Although this is not a conclusive proof of the conjecture, it tends 

to support the limited observations on which the conjecture is based. In 

connection with this same question, it should be recognized that application 

of the inlet and discharge boundary conditions formulated herein to a duct 
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flow wi,thout. any turbomachi.nery would not be sufficient to define a unique so- 

lution, as is frequently the case ,in inviscid flow problems. An .infinity of 

solutions, ranging from no flow to choked flow, could satisfy the imposed 

b0undar.y conditions, and,only the initial data would determine which solution 

(if any) .would be obtained. It is the addition of the rotating blade row and 

the application of a Kutta condition to each a.irfoil which provides the addi- 

tional constraint that defines a unique solution. From this viewpoint, the 

rol.e of initial conditions should be irrelevant, as jong as a solution can be 

obtained. 

;. :.’ 

In the ,present formulat 

of two ways. If no previous 

ion, initial condit ions can be specified in either 

information is ava ilable (a “cold start”), the ini- 

tial data for the entire computational domain is approximated from the inlet 

and discharge boundary conditions, (supplemented by u-~ in the open duct case) 

and an initial value of the swirl angle, tan 
-1 

v/u, at the inlet. In this 

case the inlet pressure and entropy are imposed in the domains preceding the 

rotor. The density is computed from the equation of state and the meridional 

velocity from the inlet mass flow rate (pu2nrb)-m. The circumferential ve- 

locity component is approximated by maintaining the inlet value of the tangent 

of the swirl angle, (v/u), throughout these domains. Within the rotor, a 

linear increase in pressure from the inlet value at the leading edge station 

to the discharge value at the trai 1 ing edge station is assumed. An entropy 

gradient may also be imposed across the rotor corresponding to anticipated 

shock losses. Downstream of the rotor, the pressure and entropy obtained at 

the rotor trailing edge station are assumed to prevai 1. The density and 

meridional velocity are again obtained from the equations of state and inlet 

mass flow rate, respectively. Downstream of either blade row, the slipstream 

is assumed to lie on a continuation of the trailing edge camber line, and the 

circumferential velocity component is approximated from the slipstream angle 

rather than the inlet swirl angle. The blade surfac,e and sl.ipstr,eam .point ,. 

routines are then activated for one time step to satisfy the boundary condi- 

tions on these surfaces. 

If a previous solution, employing the same grid structure, is available 

(i.e., a “restart”) it may be used as initial data, with either the same or 

53 



revised boundary conditions. 
;: 

However care must be exercised in this regard 

when carrying out a computation using the phased boundary conditions. The 

elapsed time must always be measured from the “cold start” since the cyclic 

procedure uses stored boundary data which is identified by a time counter that 

cannot be altered when “restarting” the computation. 

Finally, it is pointed out that an initial transient solution which is 

physically irrelevant can excite slipstream oscillations which are sufficiently 

violent to abort the computation. Therefore, provision has been included to 

utilize a “small disturbance” type slipstream approximation during the initial 

transient phase. In this case, the slipstream point algorithm is carried out 

in its entirety, but the resulting solution is applied on the original slip- 

stream contour, which is held fixed. The computation of the slipstream motion 

can be restored after the initial transient phase of the interior solution has 

decayed. This option can be regarded as a “two phase” initialization procedure. 

BOUNDARY 

Mot 

IS LAYER AND WAKE ANALYS 

vation and Approach 

The requirement for evaluation of viscous effects in compressors and/or 

fans arises from a number of sources: (a) the displacement effect of the 

boundary layers on the blades, and on the hub and casing walls constricts the 

inviscid flow area and thereby alters the inviscid solution, (b) the viscous 

drag is largely responsible for the loss of total pressure through the stage 

(in a shock-free flow it is solely responsible), (c) passage of one blade row 

through the wakes of a preceding row contributes significantly to the unsteady 

lift of the second row and the associated acoustic properties of the stage, 

and (d) in the extreme, the inviscid portion of the flow is entirely engulfed 

by turbulent eddies. In the last case, the physical and mathematical character 

of the flow is fundamentally changed, and the analytical model must be reformu- 

lated accordingly. In the present approach, as described in the preceding sec- 

tion, it is assumed that the flow is predominantly inviscid, and viscous ef- 

+:Details of these procedures are contained in Volume II of this report. Note 
that the stored data is the non-dimensional form defined by Equation (49). 
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fects can be modelled by standard boundary layer theory. Thus, the situations 

in which viscous effects predominate (i.e., separation or fully turbulent flow) 

are excluded. However, approximate representation of the first three effects 

noted above is incorporated in the present model. 

The displacement interaction between boundary layer and inviscid flow under 

steady conditions has been, and remains, a subject of extensive research. Prac- 

tical computational methods which are applicable when separation (i.e., flow re- 

versal within the boundary layer) occurs have not been firmly established as yet. 

A less satisfactory situation exists in an unsteady interaction, for which even 

the definition of separation is not universally agreed upon. Unfortunately, the 

pressure gradients in compressors are usually adverse and, therefore, separation 

is a significant problem. 

The intent of the present effort is to provide only an approximation to 

the boundary layer displacement effect on the blade surfaces; therefore re- 

course is made to standard steady boundary layer representations based on zero 

pressure gradient and local similarity concepts with heuristic corrections to 

account for regions of separated flow. If separation is indicated on this 

basis, a more detailed analysis of the boundary layer is clearly required. 

Quasi-Steady Approximations 

The use of steady boundary layer representations implies that either the an- 

ticipated time scale for variations in the inviscid flow is much larger than 

the characteristic boundary layer response time, or that the anticipated un- 

steady components of the viscous flow solution are small compared to the 

steady components. The first condition can be examined by comparing the time 

for a diffusion wave to traverse the thickness of the boundary layer with the 

period between rotor blade passings. The speed of a diffusion wave is of the 

order p/(p&) and hence the time to traverse the boundary layer is of the order 

62P/lJ. Therefore, the first condition requires: 

(143) 
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The maxim.um.bounda,ry layer thickness .is on the order of 
. 

where R = put/p is a Reynolds number based on chord length and characteristic 

(mean) values of velocity, density and viscosity in the inviscid flow. There- 

fore, Equat ion (14.3) becomes : 

25 lami nar 

i 315 
qR 

turbulent 

(144) 

(145) 

(The laminar value is only included for the sake of comparison; a turbulent 

boundary layer is expected to prevail over most of the blade under typical 

operating conditions.) 

Typical values of the parameters appearing in Equation (145) are of the 

order of 2~r/N = l/10, u/Rr = 1 and r/c = 10. Therefore, the required inequal i ty 

is not generally satisfied; i.e., the response time of the boundary layer is 

longer than the period between blade passings. Consequently, justification of 

the assumption of a quasi-steady viscous solution must be predicated on exis- 

tence of relatively small amplitude unsteady disturbances in the inviscid flow. 

Thus, it is consistent with use of acoustic or linearized inviscid flow theory, 

but not necessarily consistent with the present use of nonlinear theory. The 

possible requirement for an unsteady viscous flow analysis to correctly repre- 

sent the viscous-inviscid interactions in rotating turbomachinery should be 

recognized. 

Blade Boundary Layer Displacement 

Thickness and Shear Stress 

(a) Basic Equations - In the present context, the principal interest in 

the boundary layer solution resides in determination of the displacement effect 
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on the blade surfaces and the initial conditions. for the wakes which emanate 

from the trailing edges. Therefore, the well known momentum integral equa- 

tion (cf., Reference 15, Chapter VIII) is adequate to provide the required 

informat ion: ., 

dC3 T 
0 - = - 

dx pi2 
+ [28 + 6”l 

.’ ‘, e : 
(146) 

where G  is the distance ‘along the blade surface measured from the leading edge; 

U refers to the magnitude of the velocity vector in the inviscid flm at ‘the 

blade surface (in the frame of reference of the blade row), p is the corre- 

sponding density, and density variations within the boundary layer as well as 

the effects of variable stream sheet thickness and radius are neglected. The 

shear stress, displacement thickness and momentum thickness are defined by: 

T 
0 

= 1-I ($1 

y=o 

(147) 

(148) 

0 = 
I 

-+)d; : (149) 
U U 

0 e e 

where ; is the velocity within the boundary layer. As will be shown below 

Equation (146.) can be transformed to the following form for both laminar and 

turbulent boundary layers: 

: 
;t 

d6 = AR -6 

d; 

where the parameters A and B are approximate functions of the shape factor, 
J- 

6 /0, pressure gradient, Reynolds number,‘etc., which w’i 11 be derived below. 

Numerical integration of Equation (150) by the simple Euler formula provides 

the displacement thickness at the grid points spanning the blade surface: 
t 

(150, 
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t A 
6 j+l = 6 j 

i (AR-‘) j Ai ., .' (151) 

Integration is begun midway between the leading edge and the first surface 

point to avoid the singularity at the leading edge (x = 0). Evaluation of- 

the shear stress is outlined below. 

(b) Laminar Flow - The solutions of the Falkner-Skan equation 
16 , i.e., 

.., 
f + ff” + B(l-f-2) = 0 (152) 

derived by Hartree l7 (cf. R  f e erence 18 for a complete derivation and discus- 

sion of this equation) form the basis of the laminar flow approximations which 

are utilized up to the transition point. In this case 

f = f(T)) 

m+l U 
n i= ; t--y- P +) 

I.lX 

B=$ 

U = GefO (l-l) 

Accordingly, 1 - 1 

T = u 
0 

-e (F p 2) fCO (0) 
ux 

and, from Equation (146) with die/dx = 0: 

d; 
(0) R-’ 

Therefore, by comparison with Equation (150)) the values of A and B for a 

laminar flow are identified as 

;L 
A = $ (q) 

& 
f” (o) 

(153) 

(154) 

(155) 

(156) 

(157) 

(158) 

(159) 

B = l/2 (160) 
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The values of 6*/e and fU (0) obtained from the Hartree solutions have been 

curve-fit as a function of the pressure gradient parameter $ for the attached 

flow branch; .i 2 l .1988: 

-c 
6 
8 

= 2.16 + 1.86 exp(-7.367 (B + 0.1988)) 

f Cc (0) = 0.79 (8 + .1988).525 

. 
Separated flm solutions are obtained for B < - .Ig88. For this case 6* + ~0 

and f*‘(o) < Q. The condition 

< * 6 yj- f” (0) = 0.0 

(162) 

(163) 

is used to permit continuation of the integration of Equation (150) through 

the separation region. However , the result should be viewed with caution if 

separation is indicated, as a more detailed viscous solution is required for 

this case. 

(c) Transition - The criterion for transition from laminar to turbulent 

flow is based on a study by Pretsch 18 described in Reference (Is), Chapter XVI I. 

Transition is considered to occur when: 

R6;g< > R6” 
critical 

(164) 

where R&.L = puGii/p. The critical Reynolds number is defined by: 

for B<- .1988 

R&4 = -.1988 < B < 0 (165) - 
critical 
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(d) Turbulent Flow - A power-law velocity profile is assumed to be de- 

scriptive of the turbulent boundary layer (cf. Reference 15): 

l/n 
U -= (;I 

c; < 6) - 

U  
e 

In this case 

-‘c 
6 6 

=l+n 

8 6n = 
(l+n) (2+n) 

19 This type profile was experimentally derived for pipe flows by Nikuradse , 

for which the corresponding shear stress law was proposed by Schlicting 

(Reference 15, Chapter XX): 

-2 
T 

0 
= pu e .0225 R; 

where R 6 = pud/v. Substitution of these results into Equation (146) with 

dGe/dx = 0 produces Equation (150)) with the following values of A and B 

for turbulent flows: 

A = ($$ 1 0.028 (l+n) (2+n).,0s8 
n 

B = 0.2 

(167) 

The following empirical correlations of the exponent n and factor B have been 

developed to extend the applicability of this result over the range of Reynolds 

numbers and pressure gradient effects discussed by Schlicting (Reference 15, 

Chapter XXI and, XXI I): 

(169) 

(170) 

(171) 

2.183677 + .573308 log R -.0136455 (log R)2 for R < 1.7~10~ 
c 

n = (172) 
7.6 for R > 1.7~10~ - 
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n = 

i 

r 
2 + (n 

LPX 
-2) exp I- 

n--3 
AP log (&I 

r . 
2n - [2 + (n 

LPX 
2 

-2) exp [- np log (+$)I1 

r 0.2 - .061 exp (R - 1.7~10~) 

B= 
: 

0.139 

for p- > 0 
X- 

(173) 

for p-CO 
X 

f0-r R < 1.7x10 6 

(174) 
for R 2 1.7~10 

6 

where p-x = ap/ax, L is the reference length used for non-dimensionalization of 

the inviscid flow, and Ap is the overall static pressure ratio across the stage. 

B 1 ade Wakes 

The main interest in the wakes of a blade row resides in the reaction of the 

blades of a succeeding blade row to traversal of each of the wakes of the first 

row. The reaction is principally that of an airfoil passing through a nonuniform 
20 

inviscid flow field (i.e., a “gust”) . However, the degree of nonuniformity 

(and the intensity of reaction thereto) depends on the diffusive properties of 

the viscous flow; the axial distance between blade rows is paramount in this 

regard. Although further diffusion can occur downstream of the plane of the 

leading edges of the second row, the identity of the individual wakes of the 

first blade row will be lost to a large extent after impingement upon the second 

row. Therefore, in the present program the inviscid slipstreams and viscous 

wakes of the first blade rows are only calculated up to the plane of the leading 

edges of the second row, i.e., the interface of domains 4 and 5. At this sta- 

tion the inviscid flow field at the entrance to domain 5 at any instant is con- 

sidered to be the composite of the inviscid and viscous solutions at the exit 

of domain 4. In other words, the identity of the individual wakes of the first 

blade row is lost downstream of this station, but their momentum and energy 

defects are transferred to the inviscid flow field through definition of cir- 

cumferential distributions of flow properties at this station which are com- 

posites of the inviscid and viscous wake solutions. The manner in which the 

composite SOlUtiOn is formed is described following the development of the wake 

Solution. 
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In view of the intended application of the wake solution,greater emphasis 

has been placed on accurate description of the velocity defect within the wakes 

than is given to description of the boundary layer velocity profile. Accordingly, 

a more rigorous theoretical model of the wake has been derived, although it still 

lies within the framework of a quasi-steady integral method of analysis. 

Governing Equations and Boundary Conditions 
0 

The standard boundary layer equations are assumed to apply along the blade 

slipstreams. The x, ; coordinate system defined in connection with analysis of 
:‘: 

the slipstream (Figure 7) forms the present boundary layer coordinate system 

which is shown in Figure (11). The governing equations are, therefore, stated 

as : 

p (pi2 + p) + 
ax 

a (p;;) = a (11 iG) - $ ($ g) 

6 6 6 
2 dr (176) 

+ PR r dx cos$ 
c 

i!- (p;Hj + 
ai 

a (p;Hj = ?e (,, it!+ - p;,,’ (; g) 

ai 6 6 

where: 

1 aA 
Ajg 

= ~0s + dA _ 
A dx - ‘OS @  

r 
H = h + + (i2 + i2 - R2r2) 

All t ime derivatives have been neglected and the standard boundary layer ap- 

proximations have been invoked, (e.g., ; c< ;). The Prandt 1 number u Cp/k 

has been assumed equal to unity. The viscosity coefficient u can be considered 

1_-1- - d - - - P - -  

::ln this context 7 denotes an outward normal from the slipstream; thus ; = I;]. 
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to represent either the laminar value associated with molecular.diffusion or 

an effect i-ve “eddy vi scos i ty” associated with turbul’ent motion. In view of 

the extreme remoteness of the possibility that a laminar flow‘could exist in 

the wake of a fan or compressor blade under normal operating condit‘ions in 

either full-scale flight or a sub-sca1.e test facility, only the turbulent 

case is considered herein. In this connection, it should be emphasized that 

the previously noted comparisons of inviscid and viscous time scales’ should 

be extended to- include the characteristic frequency range of turbulent fluc- 

tuat ions. The present usage of “eddy viscosity” concepts and associated re- 

sults (derived,from experimental observations in steady inviscid flows) is 

predicated on the assumption that the frequency range of inviscid flow oscil- 

lations induced by blade row interactions does not overlap the turbulence 

frequency range. Consequently, the two unsteady flow phenomena can be un- 

coupled. This assumption is of course suspect, but its removal requires re- 

search into the fundamentals of energy exchange between the inviscid flow 

and turbulent motion that is well beyond the scope of the present study. 

The boundary condi t ions pertaining to the wakes are summar ized as: 

At ;=O: 

At ;+;,: 

V = 0 

au aT -=--..-=o 
6 ai 

U = (“2 : 
+ v2) 

T = Tf 

ai aT -=-co 
6 ai 

;': 
At ’ = ‘T.E.’ ‘wake = ‘boundary layer 

I , 

e wake = 8 
boundary layer 

(180) 

(181) 

(182) 

(183) 

(184) 

(185) 

(186) 
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The subs,c,ript f denotes the instantaneous inviscid flow values measured at 

some suitably defined front between the inviscid and viscous flows, which im- 

plies qf < 2sr/N. The boundary conditions for the case when the wakes merge 

to form a completely viscous flow will be stated in a following paragraph. 

The conditions expressed by Equation (181) are approximate, since the, 

wa,kes will not, in general, develop symmetrically about the slipstream posi- 

tion defined by 7 = 0. However, the displacement of the line of minimum ve- ’ 

locity and zero normal gradient of velocity from the slipstream position will 

be neglected. Furthermore, the asymmetric character of the wake, due to the 

differing boundary conditions which may exist on each side of the wake as 

y + qf, as well as the asymmetry of the boundary layer solutions of Ghe blade 

trailing edge, will be approximated by using two symmetric solutions; one per- 
- - 

taining to 0 < y < yf,R and the other to 0 < i < if u. 
, 

At sufficient distance downstream of the blade row the wakes will entrain 

the entire inviscid flow field and merge to form a fully turbulent flow. In 

thi s event, the boundary conditions given by Equations (182), (183) and (184) 

are replaced by: 

- - 2nr 
At Y=Y~,~=N - , Yf u: (187) 

ai aT -c-=(-j 
ai a; 

(188) 

The analyses pertaining to independent wakes and merged wakes differ correspond- 

ingly as outlined below. 

Analysis of Independent Wakes 

The method of integral relations 21 is employed using a single strip to cover 

the region from the wake axis (y = 0) to the wake front (outer edge) (y = qf R 

or yf ,,). This approach is equivalent to use of the Karman momentum integral 

equation for the boundary layer; however, the surface boundary conditions are 

replaced by a set of differential equations corresponding to Equations (176) 

and (177) eva luated at ; = 0, where Equations (180) and (181) pertain: 
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d; m  1 
U dp + E - =--- 

m, d; pm d; 

2 dr + .Q r dx cos$ (189) 

dH’m 
U -== 

m d; m  

(The subscript m  denotes minimum value, which in accord w 

of symmetry occurs at ; = 0.) 

The integral form of the continuity equation results 

of Equation (175) by d; and integration from y = 0 to q = i,(x) (where ; f 
denotes both yf,& and Y~,~) Observing the above noted boul 

these 1 imi ts, integration yields: 

ndary conditions at 

Corresponding integration of Equations (176) and (177) and substitution of 

Equation (191) into the resulting equation yields: 

y f 
d 

i 

d; y f 
- 
dx 

pi&, - i) d; + f 
dx I 

(Pfif - p;) d; 

0 0 

1 J I: -/.. ,, .,. :.,, 

;f 
1 aA = - 

An J p&i, - ;r) d; 

0 

(190) 

i th the assumption 

from multiplication 

Yf ;f 

PfVf = - [ 
I 

api - 1 aA - 
ai 

dy + x z 
i 

P; &I 

0 0 

(191) 

2 dr y f 
- R  r dx COS$I 

5 
P d; 

0 
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d - 
d; 

5 Yf 
J pi(t( - 

dH; 
Hj d; + - - pi) d; 

d;; J (Pfif 
0 0 

y f 
1 aA = - 

K a5(’ J pi (Hf - H  > . d; 

0 ‘. 

"(193) 

Equations (191)) (192) and (193) each represent a pair of equations; one for 

Yf = yf,&, uf,ll, vf = vf,is etc. and the other for yf = yf u, uf = uf u, etc. 
, , 

The ; coordinate is transformed according to: 

(194) 

and transformed wake thicknesses are defined by: 

;f 11 f 

csL = P 

J - Of,& 
d; 

0 

2.2 The eddy viscosity coefficient is assumed to transform according to : 

Ei 
E w2 Eli = p-q2 EU 

of,% pf,u 

where ~~ denotes an equivalent incompressible value. The above transforma- 

tions reduce the system consisting of Equations (189) through (193) to that 

of an equivalent incompressible flow. The eddy viscosity in incompressible 
” 

flows has been experimentally correlated by : 

(1%) 

*For the sake of clarity, discussion of the basis of the selected eddy viscosity 
law and velocity profile representations is deferred to the end of this derivation. 
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Ei = .032 (if - urnI 6 (197a) 

In view of the noted asymmetry in the present application, Equation (797a), ‘. 
is interpreted as: 

Ei = .032 (6, k + ;f,u)/2 - im) be + 9/2 (197b) , 

The veloc ty profile is represented by a corresponding approximation: , 
Uf --I (;f II , 

- ;m) (1 + cos~n~/6Q)/2 ,:.for 0 2 q 2 yf II 
, 

-u= (198) 

6 - irn) (1 + cos~rlu/6u)/2 
- - 

f,u for 0 ( Y I Yf,u 

A similar representation is assumed for the relative total enthalpy profile, 

however , the possible existence of a different thickness for the relative 

total enthalpy defect ,than for the velocity defect is recognized: 

“,I (1 + COSV~/~~ R )/2 , for 0 2 i 2 yT II 
, 

\ . 

Hi) (1 :+ COSV~,,/~~ ,)/2 for 0 2 ; 2’yT u 
, , 

(19.9) 

where 6T,R # 651 and 6T,u # 6u is assumed. In this connection, it should be 

pointed out that compressor or fan blades are usually uncooled and, therefore, 

operate at a wall temperature corresponding to the average absolute total 

temperature (or total enthalpy) of the airstream in which they are immersed. 
c . 

Thus, the difference Hf - Hm wi 11 be on the order of the difference between 

the local, instantaneous total enthalpy and the average value experienced by 

the blade. It is anticipated that in general : 

I  

Hf 
- “’ << H; (200) 

Furthermore, it is we1 1 established that 
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-_ - 
Uf - u -c-c Uf 

prevai 1s within a turbulentwake a’ very short distance from the trailing 

edge. It, therefore, foi lows that: 

P/Pf = 1 
, 

(202) 

Also in connection with Equationi (198) and (199)) it should be noted 

that double-valued second derivatives of.velocity and total enthalpy at 

; = 0 result f‘ rom the two forms of each equation. Therefore, the second 

derivatives at 3 = 0 are approximated by: 

0 = 
an2m 

27T2 2 ((if II + ;f,u)/2 - im) 
(Q + “J , 

r 
a21i ) 

2 
( 

2.r - = 
an2 m  NT L + 6T J2 

((H; R + H;,u)/2 - HI,;) 
’ t , 

Substitution of the above-stated profile representations, eddy-viscosity 

law, and transformations (e.g., Equation (178)) into the system given by Equa- 

tions (1891, (1901, (192) and (1931, and using p/pf = 1 In evaluation of the 

integrals, yields the following set of ordinary differential equations: 

d; 
u m= 

m d; 

dH* m  
U PC 

m d; 

1 dp + .032n2 

Tnz (5 + 6lJ) [(“f ,9. + Uf,U 
)/2 - im12 

2 dr 
+ R r = ““‘” 

r 

.0321~~ (6x + “u) 
[(if R  + if,u)/2 - ;,I [(H; R , . 

(203) 

(204) 

(205) 

Cl 

(206) c 
+ Hf,u)/2 - HiI 
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( 
dim dif i 
___L) - d”f i 1 dpf i 

1 
im) d& dx 

(A-+-L 
uf,i dx ‘f,i dx 

cos 4 dA _ 2R2r cosrfi 
(207) 

dx - (; 
, for i=R and u 

A 
‘f,i 

;,% 
f,i - m  

c c 

1 
d6 

T,i 1 
( 

+ dPf,i 1 - 
6 (H; i - # 

) 
T,i dx Hm) dx dx ;f,i dx ‘f,i dx 

I 

, 
dHf i 6. (Uf i - im) 

- -L (-+-) 6’ ‘> - y g, for i = R and u (208) 

‘f,i dx T,i (Hf,i - “m) 

A more specific definition of the frontal locations yf R  and yf u is now , 
required to carry out the numerical integration of the abov; system. The 

frontal location can be unambiguously defined by matching the mass flow con- 

tained in the wake at any streamwise position to that in a corresponding in- 

viscid stream1 ine, namely: 

;f ;f 

h = 
i 

(P : 6) = 
inviscid J (P ; d;)wake = Pf if Gf 

0 0 

Thus ; 

;f 
1 

;f = -77 (P i d;) inviscid 
pf uf 

J 
0 

where : 

‘f = ‘inviscid G, ; = ;,, t) (21 la) 

-- - 
Pf = Pinviscid (X, Y = Yf’ t) 

etc. 

(209) 

(2101 

(211b) 

70 



and : 

2 = [ zinviscid]G,,7f,t + [I:inviscid] x 
dYf 
7 (212) 

- - 
,Y’YfJ 

dx 

The x derivatives of Hi and pf must be corresponding ly defined. Since p/pf = 1; 

dYf i 
-L- 

d’i 
-- for i = !L and u 

d;; dx 

Therefore, Equation (207) must be rewritten as: 

dAi 
-= 
d; 3if i - 2Um 

, (au) +Lap 

‘f,i (i f,i - irn) a; pf a$ 

dr 

- ;,)dx 

(214) 

for i = 9. and u 

where a/ax and a/a; denote the inviscid flow values at (G, 7 = vf, t) as used 

in Equation (212). 

To within the approximation contained in the above system of equations, the 

displacement, momentum defect and thermal energy defect thicknesses in the wake 

are defined by: 

:‘; ‘f,i - ‘rn 
6i=6i _ 

2uf,i 

e = 6 ‘f,i - ‘rn 
i i - 

2uf ,i 
> , 

e 6 “f,i - Hm 
T,i = T,i - 

2Hf, i 

(213) 

for i = 11 and u 

for i = II and u (216) 

for i = II and u (217) 
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I  

Thus,  6;  =  e i  in  this context .  H o w e v e r  , in  the  b o u n d a r y  layer  at  t he  trai  1  ing,  

e d g e  1 5 ’~  #  9;  there fo re ,  - the  w a k e  so lu t ion  c a n n o t  ma tch  b o t h  the  d i sp lacemen t  

a n d  m o m e n t u m  th icknesses of  t he  b o u n d a r y  layer  so lu t ion,  a n d  a  mismatch. in  o n e  

o r  the  o the r  mus t  b e  accep ted .  S i n c e  the  d i sp lacemen t  th ickness is to  b e  u s e d  
* 

as  a n  ef fect ive b o u n d a r y  of  t he  inv isc id f low, a  m ismatch  in  6  is cons  i d e r e d  

unaccep tab le .  There fo re ,  t he  ini t ial  cond i t ions  for  t he  w a k e  so lu t ion  a r e  

t aken  to be :  

im  (0)  =  0 .0  (218 )  

H , (0)  =  (Cp  T)  -  +  Q 2 r 2  ( 2 1 9 )  
b l a d e  
t ra i l ing e d g e  

6 L  (0)  =  2 6 ”: 
b l a d e  u p p e r  su r face  

.trai 1  i ng  e d g e  

6 u  (0 )  
:L  

=  2 6  b l a d e  l owe r  su r face  
t ra i l ing e d g e  

6  T L  l o ) =  h g  (0 )  
, 

6  T  u ( o ) =  b u  (0 )  
, 

( 2 2 0 a )  

( 2 2 0 b )  

( 2 2 1 a )  

( 2 2 1  b )  

( T h e  ini t ial  t he rma l  de fec t  th ickness is e q u a t e d  to the  ini t ial  veloci ty d e -  

fect th ickness in  l ieu  of  a n y  m o r e  p rec i se  in format ion .  S h o u l d  a  m o r e  d e -  

ta i led  b o u n d a r y  layer  so lu t ion  b e  i nco rpo ra ted  in  the  m o d e l  at  a  la ter  date,  

t he  ini t ial  w a k e  cond i t ions  c a n  b e  mod i f i ed  accord ing ly . )  

Ana lys is  of  M e r g e d  W a k e s  

In the  f o r e g o i n g  d iscuss ion,  it h a s  b e e n  imp l ied  that  t he  w a k e  of  e a c h  .‘, : ,’ 
:, i,: 

b l a d e  g r o w s  in to  a  k n o w n  inv isc id f low f ield. H o w e v e r  , a t  a  suff ic ient d is -  .+  j 

t ance  d o w n s t r e a m  of  the  b l a d e  r o w  the  w a k e s  wil l  en t ra in  the  en t i re  inv isc id 
‘@ $ $  
, .; 

f ie ld a n d  m e r g e  to fo rm a  comple te ly  tu rbu len t  f ield. In  this case  the  p r e -  
.~  
. 

v ious ly  s ta ted ana lys is  mus t  b e  mod i f i ed  accord ing ly .  Fo l l ow ing  the  p rev ious ly  
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out 1 i ned procedures, using the same small perturbation approximations, and 
;‘; 

adopting the same profile representations , the integrated ,form of the con- 

tinuity.equation becomes: . I 

‘, , 

- 
(222) 

where now u f = u f,! = Uf,U 
and z = (“a + 6,,)/2. Evaluating the momentum equa- 

tion on the axis (y = 0) and at ? = ;f R  = 2nr/N - ;f u gives: 
, , 

dlrn 1 U d’p -= - - - + 
m  dx ‘rn dx 

.032 (if - irn) (223) 

and 
dif 1 dP - 

2 2 

“fxg-=-Pfd, -032 (if - im) .k + Q2r gcosg (224) 
26 

Substituting from Equation (224) into (222) gives: 

Adding Equa 

.032 (iif - im) 
22 - 

& - uf (im + if) y g 
26 

(225) 
- &- dr & COS@ 

tions (223) and (225), and noting that Pf - Pm << Pf, Yields: 

(u - 
dim 

f im) - = (226) 
dx 

.064 (;, - LrnJ2 L - if (irn 
2: 

+ if) =pg 

Thus, the rate of changes of if and of urn - are determined from Equations (222) 

and (226). Furthermore, the pressure is determined from- the sum of Equations 

(223) and (224) : 

d; d; 
+$) 2 = - (Urn--$++++ 2 + 2R2r g co59 

m  
(227) 

‘;Note that the cosine function is particularly appropriate for this problem 
due to the periodic character of the wake. See Reference (15), Chapter 
23, p. 604. 
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t ion of the energy equat Eva1 ua 

gives: 

and 

- - 
ion on y = 0 and on y = yf,ll = 2m-/N - Tf u. 

, 

3 dH ’ m U -= -032 (if - Lrn) (Hi - H;) 7TL (2281 
m dx 2; 

dH; 
- = - 

uf dx 
.032 (u, - Zrn) (H; - H,) z 

26 

from which the rates of change of Hm and Hi can be obtained. Note that 

6T 
= 6 is required downstream of the point of merger. 

It is remarked parenthtticaiiy ri,at in the special case of dA!dx = 0; 

Equations (222) and (226) can be combined to yield the well known result 

that the maximum veiocity differential (Gf - irn) must asymptotically decay 

linearly with increasing distance, in contrast to asymptotic square root 

decay rate fo: the individual biacie wakes. 15 

Eddy \/iscosity Law and Velocity 

Frofi le Representations 

A variety of formulas have been proposed in various investigations to re- 

late the eddv visco; itv defirec! by, the Reynolds str2ss + namely: 

E= - 

to the mean proper ties of a turbulen: f!ci+. 7% present formulation wi 11 draw 

upon one of the earliest and most generally accepted eddy viscosity laws; 

however, its validity can only be established by comparison with experiment and 

it should always be regarded as tentative and subject to revision. 

A “universal” number characterizing the eddy visccsity in a turbulent, in- 

compressible wake was derived bv Townsend 2j based on equilibrium of energy 

among the larqe-stair eddies: 

(229) 

(230) 
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RT = (if - im) lo/E = constant (231) 

where II o is a wake width parameter defined by the requirement that the ve- 

locity profile conform with: 

Uf-U= f (u - Urn) exp (-Y2/2gE) (232) 

Townsend23 obtained the value RT = 12.5 from a correlation of his data on the 

wake of a cylindrical rod in the form: 

RT 
Uf - u = (if - Urn) exp (- 5 c v2 

d (; - xo)d 
1 

from which llo can be identified as: 

(1 
0 

= (Cd (ii - $d/Ji;; RT)’ 

(233) 

(234) 

where C d is the drag coefficient, d the rod diameter and x0 an effective 

origin. A somewhat more useful definition of Lo can be obtained as follows. 

We note that Townsend’s wake data can also be accurateiy correlated in terms 

of Coles wake function 
24 as indicated in Figure (12): 

- - 
u-u m  = (235) 

“f - um 

where n = y/6 and 0 is the value of y where tl 2 u f’ W(r\) is a tabulated func- 

tion based on correlation of turbulent boundary layer data, and is known to 

have wide applicability to compressible as well as incompressible flow through 
25 suitable transformat ion . \J(n) can be accurately approximated (see Figure 12) 

by W  = 1 - COS’TIT). Therefore, 

“f - u = (Uf - Urn) + (1 + COSlTrj) (236) 

The above velocity distribution is matched to the desired exponential form, 

Equation (232)) by requiring that: 
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co m 

5 
exp (- y2/2Lz) d; = 3 (i + cosn;/b) d; 

0 

(237) 

which gives 
P ,. 

‘,. 
R = 6/Z = 0.40 6 (238) 

0 

Therefore, if the velocity profile is represented by:Equatjon (2361, the 
: .! 

eddy viscosity is consistently represented.:by: .’ : .,_ 

“’ 
. 

E = 0.032 (if - im) 6 (239) 
‘. . 

Parenthetically, it is noted that in terms of the exponential form, the above 

value of R. gives ; = .957 Gf + .043 im at y = 6. 

It is emphasized that the above results pertain to incompressible flows. 

The extension to compressible flows by transformation has been discussed by 

Ting and Libby 
22 

. In particular, the postulate that the shear stress remains. ..* 

invariant under density transformation (see Reference 22) has led to satis- 

factory results at supersonic and hypersonic conditions and, thus, should be 
. . 

quite accurate for the presently considered transonic and low supersonic flows. 

Composite Solution 

As previously indicated, the viscous and inviscid solutions obtained at the 

exit of domain 4 are used to define a composite,inviscid solution for the en- 

trance station of domain 5. The composi’te solution is defined as follows: 

a<0 I - 

U = (1-a). (~“os~~)viscous + “Uinviscid O<a<l 

- i 

(240) 

a> 1 
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where : 

(is in+) viscous 
-f-V inviscid 

(1-a) (~Sin~)viscous + ‘inviscid 

V  inviscid 

Hli scous 

/-j* = I (l-a) H’ 
. 

viscous 
+aH inviscid 

. 
H  inviscid 

P = p. inviscid 

; = IY-YiI ‘Os~ i = 11 and u 

a<0 

O<a<l 

- I 
a>1 - 

ai0 

O<a<l 

I i 
a> 1 

(241) 

(242) 

(243) 

(244) 

(245) 

The variables denoted by ;viscous and HViSCOUS are obtained from the pro- 

file representation given by Equations (198) and (199) using the viscous solu- r > 
tion im, Hm, 6i and AT i and the frontal values u 

9 f,i and H f 
I 

i (i = R and u) . 
-1. 

The range of values of 7 is selected to match the undisplaced y coordihates” 

of the grid points on those two grid columns of domain 4 which bound the first 

grid column of domain 5, and composite solutions are generated at these two sta- 

t ions, Equations (240) - (243). The inviscid solution for the first grid 

column of domain 5 is then obtained by linear interpolation of the composite 

solutions, for use in accord with the procedures outlined in the sub-section 

entitled “Periodicity Condition”. Thus, the composite solutions simply replace 

the inviscid solution which would be used to carry out the interfacing of domains 

4 and 5 in the absence of viscous effects. 

*The transformed circumferential coordinate v used for the inviscid solution in 
domain 4 (and also domains 3, 5, 6 and 7) obviously includes the local displace- 
ment thickness in definition of the computational boundaries; i.e., in Equation 
(37)yi=r0iL67 (i = 1, U). Thus, the displaced computational domain does not 
span the entire blade-to-blade passage, whereas the undisplaced domain does. 
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RESULTS 

The method of analysis described above has been implemented in a FORTRAN 

code26 and tested with respect to several single stage transonic fans for which 

experimental data is available 27,28 . A combination of design information and 

measured data for these fans has been used to define the initial and boundary 

conditions. The “infinite duct” inlet and discharge boundary conditions were 

used in the calculations reported here; limited tests with the “open end” con- 

ditions were also conducted, but detailed comparisons with the “infinite duct’! 

model were not carried out. The meridional plane analysis of Katsanis and 

McNally 29 was used to define the streamsheet thickness and radius by tracing a 

selected streamtube through the stage. 

As a prelude to analysis of rotor-stator interactions, several isolated 

rotor analyses and an isolated stator analysis were carried out. The stator 

analysis will be discussed first, since comparison of the present method and 

the relaxation method of Katsanis 30 is possible for this case, which offers a 

direct assessment of the program accuracy, independent of the viscous and three- 

dimensional effects present in the transonic rotor data. Since the stator is 

subcritical at the selected operating condition, the velocity-gradient tech- 

nique3’ provides a reasonably accurate benchwork solution for a shock-free 

flow. The experimental data 
27,28 

for the rotors wi 11 be used primarily to 

indicate the predictive capability of the present method with respect to the 

structure of passage shock systems. 

The stator is part of a 1500 fps (457 m/s) tip speed transonic fan stage 27 , 

which will be described more completely later in connection with the rotor-stator 

interaction analysis. The stator row has 46 blades and a hub to tip ratio of 

0.6. The selected operating point corresponds to Reading 137, of Reference (27) 

which is an open throttle, 100% speed condition. The selected streamsheet fcl- 

lows the casing wall and has a thickness of l/3 of 1% of the casing radius at 

the inlet station (one chord length upstream of the rotor). The inlet Mach num- 

ber is 0.6 and the inlet flow angle is -30.7’. The stator is intended to produce 

a purely axial exit flow. The blade section at the casing is shown at the top 

of Figure (11). A grid network consisting of 17 columns (axially) and 9 rows 

(circumferentially) in each of three domains (i.e., 459 points, excluding external 
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grid points) was used for this case, as well as the isolated rotor cases to be 

discussed next. The solutions converged within 103 time steps with this grid 

point density, and each required approximate,ly three minutes execution time on ,. 
a CDC 7600 computer. 

., 
‘. 

An inlet M&k ‘number of ‘Oi65’ and an inlet flpw angle of --30.0°, with neg- 

ligible circumferential variations,, were.obtained from the present stator so- 

lution. The outlet flow angle varied ci,ycumferent’ially from 6.6 to 7.0’. The 

relaxation solution was carried out for the same inlet Mach number of.0.65, but 

using the design inlet and exit flow angles of -30.7O and 0.0 
0 

, respectively. 

(Specification of the exit flow angle replaces the trailing edge Kutta condition 

in the relaxation method 30.) Sixty- one grid columns and 20 grid rows were used 

in the relaxation solution. :The surface Mach number distributions are shown on 

the bottom of Figure (13). ,It can be seen that the effect of nose bluntness 

(which is included in the reliixation solution 30 ) is essentially confined to the 

first s-10% of the chord. The compression stir-face solutions are in quite good 

agreement up to the last 20% of the chord, where the effect of the manner of en- 

forcing the Kutta condition is evident. The suction surface solutions exhibit a 

fairly uniform difference; the present method results in a somewhat higher Mach 

number over almost all the surface. In view ofthe doubled grid point density 

in the circumferential direction used in the relaxation solution, it must be re- 

garded as numerically more accurate; however, the accuracy of the velocity- 

gradient approximation for a local Mach .n,umber approaching unity is uncertain. 

The rotor for this stage 27 has 44 blades and a hub-to-tip ratio of 0.5. The 

tip speed is 1500 fps, (457 m/s), producing an inlet relative Mach number of 1.526 

at the design point. The tip diameter is 36.5 inches (0.927 m) and has an axial 

chord length of 1.7 inches (0.0432 m) at the tip. The rotor has a shroud (vibra- 

tion damper) located about 40% of span in from the tip. The stage also included 

24 variable camber inlet guide vanes, located slightly more than one rotor chord 

length upstreak of the rotor. Under the presently considered conditions the 

guide vanes were set to zero camber, to produce a,purely axial inlet flow to the 

rotor. The same operating point (Reading 137) wa-s examined, at which the stage 

total pressure ratio was 1.48’atid the inlet relative Mach number at the tip was 

1.49. The streamsheet was again assumed to be a very narrow layer along the 

casing wa!l (having a thickness about l/3 of l%.of the radius). 

. : , 
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An inlet Mach number of 1.47 was obtained in this case, and the rotor total 

pressure ratio varied (circumferentially) from 1.37 to 1.50, in-good. agreement 

with the design conditions. The rotor pressure contours obtained from the pre- 

sent solution are displayed in Figure (14a) and compare favorably with those ob- 

tained from arrays of fast-response pressure gages in the casing wall 
27 , shown 

in Figure (14b). A more direct comparison is offered in Figure (15) which pre- 

sents the blade surface pressure distributions. The differences near the lead- 

ing edge are probably attributable to the effects of nose bluntness. The ob- 

served regions of compression-expansion preceding the passage shock (z/c = 0.7 

on the compression surface and z/c = 1.0 on the suction surface) are indicative 

of local boundary layer separation bubbles. The part-span shroud may also be 

generating a shock wave which interacts with the blade shock system. In view 

of these factors, the general agreement between theory and experiment is re- 

garded as quite satisfactory. 

The three-dimensional shock structure near the tip of a similar transonic 

rotor was visualized using pulsed laser holography in Reference (28). In this 

example, the rotor has a tip speed of 1600 fps, (488 m/s), and a design pressure 

ratio (for the stage) of about 1.5. The tip diameter of the fan is 28.74 inches 

(0.730 m) and the (axial) chord length is 1.804 inches (.o458 m). The inlet hub- 

to-tip radius ratio is 0.46 and the nominal inlet relative Mach number is 1.6 at 

the tip. The rotor has 40 blades, and includes a midspan vibration damper lo- 

cated about 30% of the span in from the tip. 

The streamsheet thickness and radius distributions were obtained by trac.j.nc 

a s treamtube located about 5% of the span in from the tip and having 0.11 inches 

(.00279 m) thickness at the inlet station one chord upstream of the blade row. 

Since its thickness is less than 1% of its radius, the streanisheet radius closely 

fol lows the casing of the machine. Three operating conditions were examined; 

(a) the ,design point (Reading 128), (b) 100% design speed with a pressure ratio 

of 1 .7 (Reading 126) and (c) 90% speed with a pressure ratio of 1 .5 (Reading 106). 

The computed pressure contour map for the design case is shown in Figure (16). 

The presence of a wea? shock off the blade leading edge is evident; it subsec;u:ntly 

ref!ccts off ths !o*we- blade at about the 85% chord position and then apparently 

merafs into a stronz+T s’lock which crosses the o?ssage from the trailing ed5e of 
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CONTOUR PRESSURE 
NUMBER (PSIA) (P/P,) 

I 
2 
3 
4 
5 
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7 
8 
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IO 
I I 
I2 
I3 

9 .7647 
IO .8496 
I I .9346 
I2 I.0195 
I3 I. 1045 
14 I.1895 
I5 I .2744 
I6 I .3594 
I7 I .4444 
I8 I .5293 
I9 I .6l43 
20 I .6992 
21 I .7842 

FlG,URE l4b. MEASURED STATIC PRESSURE CONTOURS AT ROTOR TIP 
-(READING I37 FROM REFERENCE 27) 
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COMPUTED ISOBARS FOR READING I28 OF REFERENCE (28) 
M, = 1.6 AND PRESSURE RATIO = 1.5 



the lower blade to about the 85% chord position on the upper blade. These fea- 

tures are generally in accord with the reconstructed holographic observations 
28 

; 

however, the interaction between the tip leakage vortex, which stands on the suc- 

tion (i .e., low pressure) surface of the lower blade, apparently causes the rear- 

‘,ward portion of the leading edge shock to bend forward somewhat such, that it re- 

flects off the lower blade at about 75% chord (rather than 85%), and the trailing 

edge shock is correspondingly displaced upstream. The shock off the vibration 

damper also appears to be interacting with the blade shocks 
28 

. In addition, the 

assumption of a sharp leading edge may have reduced the strength of the leading 

edge shock. The computed total pressure ratio at the’discharge station varied 

(circumferentially) from 1.45 to 1.51, in reasonable agreement with the overall 
-t-J 

The rela- 

itial value 

stage pressure ratio of 1.505 reported at this operating condition 
LO 

. 

tive Mach number at the inlet converged to 1.51 as compared to the in 

of 1.53. 

In the second case (Reading 126), the higher back pressure produ 

forward shift of the trailing edge shock near the upper blade, as can 

ted a modest 

be seen in 

Figure (17). The solution along the suction surface of the lower blade, as well 

as the forward 50-60% of the compression surface of the upper blade, is virtually 

unchanged, since forward propagation of the higher back pressure is terminated at 

the trailing edge shock. No experimental data is available at this operating 

condition. 

As can be seen from Figure (18)) the reduced wheel speed of the third case 

(Reading 106) results in a lower relative inlet Mach number, i.e., about 1.4, 

and a further shift of the trailing edge shock, to form a normal shock across the 

passage. However,.the holographic reconstruction 28 indicates that the rotor is 

“unstarted” at this condition, i.e., the normal shock stands across the passage 

at the leading edge of the upper blade. The solution for this case was perturbed 

several times, e.g., by increasing the back pressure, by altering the streamsheet 

thickness distribution, and by reinitializing the data to an “unstarted” condition, 

in an unsuccessful attempt to produce an “unstarted” solution. Therefore, this 

disparity between theory and experiment must be attributed to one or more signifi- 

cant features of the acutal flow field identified above but not incorporated in 

the present analysis: finite nose bluntness, viscous effects, and three- 

dimensionality. Nose bluntness effects are believed to be significant in several 



FIGURE 17. COMPUTED ISOBARS FOR READING 126 OF REFERENCE (28) 
M, = 1.6 AND PRESSURE RATJO = I.7 
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respects, and should be included to-enhance the accuracy and expand the range of,,: / 

appl icabi 1 i ty of the present analysis, but in the present case do not appear to / 

be sufficient to cause the passage to “unstart”. The same comments can be made 

with respect to viscous effects on the blade surfaces. However, the tip leak- ,. 

age vortex and the vibration damper shock present major three-dimensional pe,r- 

turbations. to the flow near the tip section, which are not easily accommodated 

in a two-dimensional model, but could cause the noted discrepancy between the 

present results and the observed unstarted shock system structure. 

Finally, the rotor-stator interaction has been examined at the open throt- 

tle, 100% speed operating point (Reading 137 of Reference 27) previously selected. 

As pointed out earlier, the stage includes 44 rotor blades and 46 stator blades. 

Since the flow leaving the rotor is supersonic (M = 1.1) upstream propagation of 

disturbances from the stator should be cut-off beyond the steady wave front in- 

tersecting the trailing edge of the lower rotor blade of the passage. If the 

flow were uniform in the passage, this wave front inlould intersect the upper rotor 

blade at about the 40% chord position; due to the nonuniformity of the flow it 

actually intersects the upper blade at between 60 and 80% of chord. (See Figures 

14a and 14b.) The rotor flow field upstream of this wave front converges rapidly 

to an essentially steady solution, whereas the stator is subjected to sequence of 

perturbations which travel both upstream and downstream and, therefore, converge 

to a periodic solution somewhat more slowly. The calculation was carried out for 

one complete revolution of the rotor, which required about 30 minutes of CDC 7600 

computer time, using a grid network consisting of 12 grid columns and 9 grid rows 

in each of 5 domains. Approximately l/4 of a revolution (500 time steps) was re- 

quired to achieve an asymptotic solution in the rotor passage, and about l/2 rev- 

olution (1000 time steps) should have been sufficient to attain an asymptotic 

solution in the stator. Unfortunately, a minor coding error in the application 

of the phased boundary conditions was not discovered until 3/4 of a revolution 

(1600 time steps) had been computed. Upon correction, a periodic solution was 

achieved during the last l/4 of the revolution. The entire sollution was not 

repeated due to the computing time requirement. 

Provision to integrate the surface pressure distributions to obtain normal 

force and moment coefficients was not included in the code, making display of 
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- 
the periodic solution rather cumbersome. Therefore. the pressure difference 

across the blade at the.midchord point has been selected to represent the blade 

force. The midchord pressure differential across the stator is shown in Figure 

(19) for a period covering approximately the last l/4 of the rotor revolution. 

Presence of a periodic solution formed by superposition of two very distinct 

waves is apparent. One wave appears to have a peak-to-peak frequency twice the 

rotor passing frequency, and the other has a peak-to-peak frequency twice the 

stator passing frequency (relative to the rotor). Fourier analysis of the solu- 

tion over the period of l/2 a revolution would be required to quantify the spec- 

tral components of the blade row interaction field. 

As indicated above, the asymptotic flow field upstream of about the mid- 

chord position of the rotor should be steady in the rotating frame of reference 

of the rotor. However , as can be seen in Figure (zo), a periodic pressure dif- 

ferential across the rotor midchord location is obtained, and in fact even the 

inlet pressure distribution exhibits periodicity in the rotating coordinate sys- 

tem. However , the amplitide of these oscillations is much smaller than those 

found in the stator. In view of the noted supersonic character of the relative 

flow through the rotor, these oscillations must be attrib,uted to numerical propa- 

gation. Once the oscillations produced by the stator reach the leading edge of 

the rotor they are correctly able to propagate upstream, since the axial velocity 

component is subsonic. This spurious numerical propagation could be eliminated 

by observing the correct domain of dependerlce in formation of the difference 

operator, along the lines of the type-dependent difference operator used in the 

relaxation method developed by Murman and Cole2. 

SUMHARY AND RECOMMENDAT I ONS 

A numerical method of solution for inviscid, transonic f!ow through a set of 

interacting cascades has been described in .detail. Particular attent ion has been 

devoted to the statement and method of implementation of boundary conditions. The 
solution algorithms employed at the interior and boundary points of the computa- 

tional grid have been described in detail. 
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Several numerical examples have been carried out to demonstrate the cap- 

abilities and limitations of the present method. For example, a sharp blade 

leading edge is assumed in the present model. Comparison with a relaxation 

method solution for a stator blade row having blades with small but finite 

leading edge radius and operating under subcritical, transonic flow conditions 

indicates that the effect of nose bluntness is felt over the first 5 to 10% of 

the chord, which represents 10 to 20 nose radii for this case. In addition, 

comparison with experimental transonic rotor data indicates that the leading 

edge shock is generally stronger than that obtained from the present analysis, 

which is attributable to neglect of the nose radius. Thus, the range of ap- 

plicability and degree of accuracy of the present computational model could be 

enhanced by inclusion of finite nose radius. However, the accuracy of the solu- 

jor portion of the chord length, under subcritical flow condi- 

to be quite good with only 9 grid rows used from blade-to-blade 

Id be further improved by a finer grid network. 

tion over the ma 

tions, was found 

obviously it cou 

Examinat.ion of several transonic rotor solutions for “started” operating 

conditions indicates generally good agreement with the overall shock system struc- 

ture; however, boundary layer separation effects on the blade surface, evident 

in the data, produce local departures from the predicted shock structure. A sig- 

nificant disparity between theory and experiment was encountered at a high back 

pressure operating condition. In this case, the present analysis produced a 

normal shock across the passage near the trailing edge of the lower blade, where- 

as holographic visualization showed a normal shock at the leading edge of the 

upper blade, i.e., the rotor was in an “unstarted” operation mode. This condi- 

tion has been attributed to one or more observed effects of the three- 

dimensionality of the actual flow field, namely: presence of a shock off the 

midspan vibration damper, and of the blade tip vortex. Although not explicitly 

observed, separation of the end wall boundary layer may also contribute to the 

disagreement between the present two-d mensional analysis and the experimental 

observations in this case. 

A transonic rotor-stator interact on case was carried out for one full rev- 

olution of the rotor. Unfortunately, any conclusions regarding the rate of con- 

vergence to a periodic solution were compromised by the presence of a minor cod- 
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ing error which was not detected during the first 3/4 of the rotor revolution. 

,A periodic solution was obtained in the stator during the final l/4 revolution, 

upon correction of the error. The rotor solution became asymptotic within the 

first l/4 revolution, in accord with the rate of convergence of the isolated 

rotor cases. Integration of the instantaneous surface pressure distributions 

to obtain normal force and moment coefficients would facilitate interpretation 

of the results and is, therefore, recommended as well as Fourier analysis of 

these coefficients to identify attainment of an asymptotic state and to char- 

acterize. the spectral content of their temporal variation. Additionally, nu- 

merical propagation of periodic disturbances through a supersonic portion of 

the rotor passage, which on the basis of the mathematical zones of influence 

should have been inaccessible to upstream travelling waves, has been noted. Al- 

teration of the finite difference operators to eliminate or at least minimize 

spurious upstream propagation through supersonic zones by correctly observing 

the mathematical domains of dependence of the grid points is also suggested. 

Testing of the influence of the blade boundary layer and wake models and 

of the acoustic far field boundary conditions was not included in the present 

investigation due to time and budgetary limitations. In view of the above men- 

tioned areas in which further improvement of the inviscid analysis is considered 

warranted, continued developmental work appears necessary to fully achieve the 

predictive capability of the present method of analysis. Determination of vis- 

cous and acoustic far field effects may logically be regarded as part of this 

next level of development. 
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APPENDIX 

TBEA~MEN-~ 0~ VIRTUAL BOUNDARIES . 

Periodic Boundary Conditions : 

In order to clearly describe application of the periodic boundary con- 

ditions in the present analysis it is useful to illustrate the discussion by. 

introducing several rotating devices that demonstrate certain general con- 

cepts with minimal complexity of the geometric configuration. Fi rst, con- 

sider a symmetric three bladed rotor developed into a cascade as shown in 

Figure (Al) : 

CASCADE VIEW 

-C 

Y 
8 ------ -b 
Y a----- 

IX 

P ------ -0 
a ----m m  I 

FRONT VIEW 

J 
-c 

FIGURE Al. ISOLATED BLADE ROW 

Let virtual boundaries” of the blade-to-blade passages be drawn from the blade 

leading and trail ing edges to _+m. In a reference frame fixed to the blades it 

“These sufaces are not, in general, coincident with streamlines; flow can cross 
them and disturbances can propagate along and across them. 
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is clear that the flow field in each of the three passages must be identical 

if the blades are identical and.the ,inlet and -discharge boundary conditions 

are uniform and steady. Therefore, at any instant the flow is ci rcumferen- 

tial ly periodic. The flow along line 6 is identical to the flow at the 

spatially equivalent points on line 8. The flow along lines CI andy is also 

obviously equivalent at any instant. The same-argument also applies to points 

in the flow field downstream of the blades. 
. 

Next cons’ider’the system composed .of a rotor and stator each having. the 

same number of blades; specifically, consider 3 blades each as shown in Figure 

(AZ). 

When the blades are aligned, say at time’ to; as shown in Figure (A2a), 

it is clear that, because symmetry produces identical flow channels, the 

flow along and through the virtual boundaries extending from x and between 

leading and trailing edges is the same in each “passage”; i.e., all influences 

with respect to corresponding points in the respective “passages” are neces- 

sarily the same. For a different relative position, say at some later time 

tO 
4 At for example, see Figure (A2b), the noted symmetry persists since the 

geometry of respective “passages” is the same and again the flow through the 

respective control volumes is identical. The same conclusion as above is 

also reached regarding the equivalence of lines Q  with y and 6 with 6. The 

same argument again can be applied to the flow‘field between the two blade 

rows and also downstream of the second blade row. 

It is noted that due to the repetition of identical configurations with 

identical flows it is clear that only one passage of each blade-row need be s 
computed in order to determine the flow field in the whole periphery of the 

stage. As a consequence of the equivalence of the corresponding interior and 

exterior grid rows, it is also clear that the boundary values, say on exterior 

line 6, can be specified by equating them to the currently computed values at 

corresponding interior points, in this case on line B, to enforce the periodic 

boundary conditions for the passage being computed. The same reasoning is ap- 

plied to 1 ines y and ~1, and-to corresponding virtual boundaries between and 

downstream of the blades. 
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It is not obvious that the case of an unequal number of blades in the 

stator and rotor can be treated analogously: however, the following detailed 

explanation is intended to demonstrate clearly that the above techniques for 

specifying boundary conditions on a single passage can be extended to this 

case by introduction of a phase shift. In this regard a pair of blade rows. 

shown in Figure (A3a) and (A3b) portray the configuration of a 3 bladed 

stator followed by a 4 bladed rotor which will be used to demonstrate the 

unequal ipacing techniques. 

The underlying assumption here is that the inlet and discharge boundary 

conditions applied upstream and downstream of the stage are uniform and steady, 

and that the non-steady flow in the vicinity of the stage is stably periodic 

in time. The first question that arises is whether the starting process as- 

sociated with an arbitrary set of initial conditions can lead to an asymptot- 

ically periodic c>Iutioon through use of the above-described numerical procedure 

for treating spatially periodic boundary conditions. It is useful in this re- 

gard to pictorially describe the physical starting process for a system of blade 

rows set into mot.ion impulsively. This is done for the configuration introduced 

above with both the rotational speed and free stream velocity subsonic. 

Figures (A4a) to (A4m) show the development of a disturbance wave system thus 

generated. Only those waves generated when a blade of the rotor is aligned 

with a blade of the stator are portrayed in these figures and then only a por- 

tion of each wave, extending a distance xw, as shown in Figure (ARC), are 

shown for clarity. One complete revolution of the rotor, an angle of rotation 

of 2n. is represented over 12 intervals. The time increment for each interval 

is 

2n 
At = N,N2u 

2n 
=12w 

whare N, is the number of blades in the stator, N2 is the number of blades in 

the rotor and w is the rotational speed. The corresponding angular change for 

each At is 

A$ 
2n 2rr 

=NN=iT 
1 2 
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- 

Each time two blades are aligned, ind-icated by an arrow in Figure (A4a) 

through (Abm), a pulse, shown as a large dot at x = 0 above the alignment, is 

created; this pulse then travels out to form a cylindrical disturbance wave 

with increasing radius in time. Figure (A4a) has a pulse labelled (1) cre- 

ated at t = 0 where the two reference blades (cross hatched) are aligned. 

‘This pulse forms the wave, labelled (1) shown in Figure (A4b) after 

At = 2a/(12w) or A$ = 2a/12., and a new pulse, labelled (2), ‘is created where 

the next two b’lades ‘are .a1 igned, (see arrow)!. These .disturbances, (1’)’ and (2).‘, 

trave,l out to .the positions shown Tn Figure (A&z) and a new’bulse, labelled 

‘(3), .is created where the next set of, blades are aligned, (see.arrcw). The 

-‘subsequent Figures (A4d) through (A4m) show the waves travel 1 ing out further 

and new ones being created similarly to Figures (A4a) through (Ak). The 

first three waves are identified in Figures (A&a) through (A4d) and (A4m). 

Figure (A4m) can be considered as an asymptotic picture where the wave front 

in the whole periphery at a distance of x = (‘a-u) l 12At is almost flat. If 

asymptotic configurations at three times are now considered, say at t imes 

to’ to + At and to + 2At, as portrayed in Figures (A5a) through (A5c) , several 

important conclusions can be drawn. Consider first the geometry of the con- 

figurations. In Figure (A5a) the cross hatched reference or first set of 

blades are aligned (note the control vol’ume indicated by the dot-dash border, 

l -•-3 to the top and right of it) . In Figure (A5b), representing a time At 

later, the next or second set of blades to the right are aligned (also note 

the corresponding control volume as described above). Finally, in Figure 

(A5c) 2At after reference time t o the third set of blades are aligned (this 

also corresponds to the two blades at the far left of Figure (A5c), thus the 

control v 0 

these dot 

it can be 

i’dentical 

blade pos 
.A1 

lume to the right of this set of blades shall be noted). Each of 

dash control volumes correspond to the same relative geometry and 

seen by direct comparison that the asymptotic wave pattern is 

in each. The same thing is true at all other possible relative 

tions, (which imp1 ies all other times) th.at are encountered as 1 
the reference blade of the rotor moves through one complete blade spacing of 

the stator. It is thus possible to construct the entire asymptotic solution 

of the periphery at any one instant (and, therefore; at all instances) from 

all of the asymptotic periodic solutions at successive times found in one 

blade spacing control volume as the reference blade of the rotor travels 

through one blade spacing of the stator. 
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Next consider the dash-dash, ---, control volume always lying to the 

right of the stator reference blade. This is the reference control volume 

within which all solutions for the flow upstream of the stator will be found 

as a funct..ion of time. Consider now the asymptotic wave pattern which would 

be found to the right of the reference control volume at time ‘to+2At in Figure 

(A5c). : It is obvious that it is identical to the wave pattern .within the 

reference.control volumein Figure (A5b) at time to+At or one At t ime step 

earl ier (arrows “A”). Next consider the asymptotic wave pattern which would 

be found to the left of the reference control value at time to+2At i.e., in 

Figure (A5c) . Again it is obvious that it is identical to the wave pattern 

within the reference control volume in Figure (A5a) at time to or two At 

t ime steps earlier (arrows “8”). In view of this fact, the appropriate por- 

tions of the earlier solutions found in the reference control volume can be 

applied as boundary conditions to the reference control volume at the current 

time before proceeding with the computation for the next At. This is carried 

out, refer also to Figure (A3a) and (A3b), by equating the values at the 

first row of exterior grid points, say line 6, to the values that existed At 

t ime step earlier at corresponding points, in this case line 8, when the geo- 

metrical configurations with respect to lines Q  and 0 were the same. A similar 

procedure is carried out for 1 ines CL and y with its own phase lag. In addition, 

all other horizontal boundaries (those between the blade rows and downstream of 

the rotor) and vertical boundaries which require phase lags for proper speci- 

fication are specified analogously. These vertical boundaries are on the 

downstream side of domain 4 and the upstream side of domain 5. 

Consider now the starting process for the computational model. Figure 

(A6a) through (A6m) portrays the computational starting problem comparable to 

the actual physical one shown in Figure (A4a) through (A4m). The successive 

a.pplication of the boundary conditions in this manner puts a numerical phase 

lag into the solution through the imposed boundary conditions as the computa- 

tion is started. As in the actual physical starting process discussed earlier, 

blade alignment, indicated by an arrow between blades, produces a pulse, in- 

dicated by a dot and identified in the first three waves in the Figures (A6a) 

through (A6d) and in Figure (A7m). Initially there are no previously computed 

boundary conditions with phase lag to apply, hence, the “tagged” disturbances 

created in the reference control volume are of minimal accuracy and as such 
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FIGURE ~6. STARTING PROCESS SHOWING WAVE DEVELOPMENT OF DISTURBANCE 
HAVES FORMED WHEN BLADES ARE ALIGNED (SOLUTION WITH 
BOUNDARY CONDITIONS HAVING PHASE LAG). 
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are indicated by using dotted curves. \&en a more accurate boundary condition 

is available, i:e., when each side of the reference control volume can be 

specified from the solut’ion at an earlier time, the accuracy of the solution 

within’ the control volurr&ill be improved. This is indicated by dashed lines, 

as for example in’figures (A6e) and (A6f) etc. The boundary conditions with 

phase lag are applied as already discussed previously and the arrows in Figures 

(A6a) through (Aad) g i ve; examples of the phase lag for several cases. As the 

solution prbceeds in time it also becomes more accurate due to the repeated 

application of increasi:ngIy accurate boundary conditions; this is indicated 

schematically by an increasing solidity of the lines depicting the wave fronts 

in Figure (A6). 

Ultimately alI solutions of ,lesser accuracy propagate out of the computa- 
.,_ .:, 

tional domain and only the inc’reasrn-gly more accurate disturbances remifn. The 

result is that the waves associated with the approximated starting process are 

lost and the solution becomes asymptotic in the same fashion as shown in Figures 

(ASa) through (A5c). The criterion which determines the improvement is not 

the angular distance that the rotor has travelled, but is the number of t imes 

the boundary conditions,have been applied; consequently, the larger the number 

of blades, the better is the solution after a complete revolution of 27r. An 

asymptotically periodic solution should be attained when successive solutions 

at the interior points possess periodic relationships and phase lags with re- 

spect to each other which precisely match those imposed by the application of 

boundary conditions at the virtual grid points. 

Horizontal Boundaries 
. 

The “horizontal” (i .e., strearrwise) boundary points are specified by the 

technique discussed above which is based on the fact that these surfaces are 

“planes of equivalence” with a phase lag. Fi,gure (A7) shows a typical domain. 

A row of “virtual” grid points in this case k = 2 and k = KS+2 is placed one 

mesh p’bint outside the cafculation domain; at these points the flow conditions 

are equated to those existing at corresponding grid points one mesh point in- 

side the opposite boundary, in this case K = KS-l and K = 5 respectively, at a 

time when the blade positions at that opposite boundary were the same as cur- 

rently exist along the subject boundary. (The double-valued boundary rows 
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K=3, 4 and K=KS, KS+l, have been introduced to account for jumps in proper- 

ties across the slipstreams.), 

Specificati.on of-.the phase lags for these. horizontal boundaries is de- 

scribed as follows. Let there be N blades in the upstream blade row and M  

blades in the downstream blade row with N (M < 3N/2. Also let n be the num- 

ber of time steps required for.one blade spacing of the larger pitch to be 

traversed and m  the number of time steps required for the smaller pitch to 

be traversed. Then: 

Nn = Mm 

There are four sets of boundaries to be considered: 

(A3) 

A. The upper boundary of domains 1, 2 and 4, adjacent to 

K=KS, KS+1 . 

B. The upper boundary of domains 6 and 7, adjacent to 

K=KS, KS+1 . 

C  The lower boundary of domains 1, 2 and 4, adjacent to 

K=3, 4. 

D. The lower boundary of domains 6 and 7, adjacent to 

K=3, 4. 

The specific phase shifts are as follows: 

(1) Set A at K=KS+2 = Set C at K=5 (n-m) time steps ago 

(2) Set B at K=KS+2 = Set D at K=5 (n-m) time steps ago 

(3) Set C at K=2 = Set A at K=KS-1 (m-(n-m)) time steps ago 

(4) Set D at K=2 = Set B at K=KS- 1 (m) time steps ago 

The values computed at every time step at K=5 and KS-l must, therefore, be 

stored for later use. Since a considerable number of time steps are involved, 

this cannot be done using core storage and is done instead by disk or tape 

storage and recall in a non-random method. 
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Virtual grid rows K=l and K=KS+3 are required in domains 4, 6 and 7 to 

evaluate the spatial derivatives needed at K=2 and K=KS+2 in the characteristic 

solutions along the slipstreams. The procedure to define the solution at these 

exterior rows follows exactly the format outlined above, e.g., Set A at 

K=(KS+3) is equated to Set C at K=6 (n-m) time steps ago. 

Entrance and Exit Boundaries 

Solutions at the virtual grid points on vertical boundaries J=l and 

J=JS+l in Figure (A7) (except, of course, the inlet and discharge stations 

which are true boundaries rather than virtual boundaries) are linearly inter- 

polated from the data in adjacent domains. Refer to Table Al for the following 

discussion for specific distribution of data at equivalent vertical boundaries. 

It is to be noted that in order to obtain spatially equivalent grid points for 

the vertical boundaries between domains 4 and 5 account must be taken of the 

relative motion of the domains; interpolation of data as well as application 

of phase shifts are required. 

In the case of equal numbers of blades in adjacent rows, matching flow 

variables along the interface between domains 4 and 5 is straightforward; in 

any other case certain subtleties occur in the process of minimizing the com- 

puter storage and time requirements. Again a column of grid points external to 

domains 4 and 5 are considered. In the regions of overlap shown in Figures 

(A8a) and (A8b), it is clear that the exterior column of points from domain 4 

overlaps the interior of domain 5, and vice versa. However, for the regions 

of “non-overlap” determination of the flow variables at these exterior grid 

points is accomplished by a phase lag technique, analogous to the periodic 

boundary technique discussed above, which is based on the blade positions during 

a full cycle of movement of domain 5 relative to domain 4. In the case of 

equal spacing the time-delay is zero, and the regions of non-overlap labelled 

“left” and “right” in Figure (A8a) have a di rect correspondence. On the other 

hand, in the case of fractional (non-integer) spacing the matching of conditions 

along the region of non-overlap must be based on a correspondence of relative 

blade positions, which introduces a phase lag in the application of data on the 

interface between domains 4 and 5. 

115 



LEFT 

. 

3 

NON-OVERLAP 

(a) Integer Multiple Domains ( -l:l, ---2:l) 

3 

(b) Fractional Multiple Domains (1~1 (1$/N, e 3:2) 

3 

I NON -OVER1 

(c) Fractional Multiple Domains 
(at Later Time) 

116 FIGURE A8. YERTICAL BOUNDARIES BETWEEN DOMAINS 4 AND 5. 



This phase is analogous to that discussed earlier for the horizontal 

boundaries. The only added feature is that up to three separate sets of 

data each with its appropriate phase shift must be applied since the overlap 

can be such as shown in Figure (ARC) which clearly shows three regions where 

data .must be provided. Thus the J=JS values for domain 4, refer to Figure 

(A7); are equal to the J=2 values of domain 5 at t imes having up to three 

different phase shifts, as discussed earlier, and the J=l values for domain 

5 are equal to the J=JS-1 values for domain 4 at t imes having up to two dif- 

ferent phase shifts. Even though only two are needed, three are specified 

since the non-overlap region can be eithkr above or below the larger blade 

gap. The interpolation merely ignores the extra data. 
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TABLE Al 

EQUIVALENT VERTICAL BOUNDARIES, W  

DOMAIN 

AND J INDEX 

(Exterior) 

1 (JS) 

2 (1) 

2 (is> 

3 (1) 

3 (JS+l) 

4 (2) 

4 (JS) . 

5 (1) 

5 (JS+l) 

6 (2) 

6 (JS+l) 

7 (2) 
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= 

= 

= 

= 

= 

= 

= 

= 
3 

= 

= 

= 

= 

DOMA I N 

AND J INDEX 

(Interior) 

z(2) 

Interpolated between 
1 (JS-1) and 1 (JS) 

3(2) 

2(JS-1) 

I 

Interpolated from Domain 4 
6(3) 

3tJS) 

5(2) 

Interpolated from Domain 4 

6(3) 

S(JS> 

Interpolated between 
7(2) and 7(3) 

6(JS) 

TH AND WITHOUT PHASE LAG 

COMMENTS 

Only if Domain 1 is active 

Only if Domain 1 is active 

Two blade rows 
One blade row 

Only if Domain 4 is active 
(i .e., two blade rows). 

Interpolated with or without 
phase lag ( IBLEQ=O or 1), 
only if Domain 4 is active. 

Interpolated with or without 
phase lag ( lBLEQ=O or 1) , 
only if Domain 5 is active. 

Only if Domain 5 is active 
(i.e., two blade rows) 

Only if Domain 7 is active 

Only if Domain 7 is active 
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