1,576 research outputs found
Conductance fluctuations in quasi-two-dimensional systems: a practical view
The universal conductance fluctuations of quasi-two-dimensional systems are
analyzed with experimental considerations in mind. The traditional statistical
metrics of these fluctuations (such as variance) are shown to have large
statistical errors in such systems. An alternative characteristic is
identified, the inflection point of the correlation function in magnetic field,
which is shown to be significantly more useful as an experimental metric and to
give a more robust measure of phase coherence.Comment: 9 pages, 7 figure
Overlapping of Ranges of Eastern and Western Hognose Snakes in Southeastern Iowa
Overlapping of ranges of the eastern hognose snake (Heterodon platyrhinos Latreille) and the western hognose snake (Heterodon nasicus nasicus Baird and Girrard) is reported from a sand prairie in Muscatine County, Iowa
Previous attentional set can induce an attentional blink with task-irrelevant initial targets
Identification of a second target is often impaired by the requirement to process a prior target in a rapid serial visual presentation (RSVP). This is termed the attentional blink. Even when the first target is task-irrelevant an attentional blink may occur providing this first target shares similar features with the second target (contingent capture). An RSVP experiment was undertaken to assess whether this first target can still cause an attentional blink when it did not require a response and did not share any features with the following target. The results revealed that such task-irrelevant targets can induce an attentional blink providing that they were task-relevant on a previous block of trials. This suggests that irrelevant focal stimuli can distract attention on the basis of a previous attentional set
Electrical generation of pure spin currents in a two-dimensional electron gas
Pure spin currents are measured in micron-wide channels of GaAs
two-dimensional electron gas (2DEG). Spins are injected and detected using
quantum point contacts, which become spin polarized at high magnetic field.
High sensitivity to the spin signal is achieved in a nonlocal measurement
geometry, which dramatically reduces spurious signals associated with charge
currents. Measured spin relaxation lengths range from 30 to 50 microns, much
longer than has been reported in GaAs 2DEG's. The technique developed here
provides a flexible tool for the study of spin polarization and spin dynamics
in mesoscopic structures defined in 2D semiconductor systems
Fluctuations of g-factors in metal nanoparticles: Effects of electron-electron interaction and spin-orbit scattering
We investigate the combined effect of spin-orbit scattering and
electron-electron interactions on the probability distribution of -factors
of metal nanoparticles. Using random matrix theory, we find that even a
relatively small interaction strength %(ratio of exchange constant and mean
level %spacing \spacing ) significantly increases -factor
fluctuations for not-too-strong spin-orbit scattering (ratio of spin-orbit rate
and single-electron level spacing 1/\tau_{\rm so} \spacing \lesssim 1), and
leads to the possibility to observe -factors larger than two.Comment: RevTex, 2 figures inserte
Free and protein-conjugated polyamines in mouse epidermal cells. Effect of high calcium and retinoic acid.
We have investigated polyamine metabolism in primary cultures of mouse epidermal cells. These cells, which grow at low Ca2+ levels as a monolayer with characteristics of basal cells, terminally differentiate when the extracellular Ca2+ level is raised above 1 mM. The cellular levels of free polyamines were measured, and, after incubation of cell cultures with [3H]putrescine, the distribution of label in both acid-soluble and acid-insoluble cellular components was examined. Free polyamine levels were reduced in cells induced to differentiate. Treatment with retinoic acid, which prevents differentiation and causes increased proliferation, resulted in an increase in free putrescine. Upon adjustment of the calcium concentration to a level that induces differentiation, the enzyme transglutaminase was activated, and a concomitant increase in the level of both protein-bound mono- and bis-gamma-glutamyl derivatives of putrescine and spermidine was observed. Isolation of a material of apparent molecular weight about 6000 which contains only mono-gamma-glutamylpolyamines and the finding of both mono- and bis-gamma-glutamylpolyamines in the protein fraction containing cornified cell envelopes provided the basis for speculation on polyamines in envelope formation. Our data suggest that polyamines play a role during epidermal cell differentiation through transglutaminase-mediated post-translational modification
Numerical study of resonant spin relaxation in quasi-1D channels
Recent experiments demonstrate that a ballistic version of spin resonance,
mediated by spin-orbit interaction, can be induced in narrow channels of a
high-mobility GaAs two-dimensional electron gas by matching the spin precession
frequency with the frequency of bouncing trajectories in the channel. Contrary
to the typical suppression of Dyakonov-Perel' spin relaxation in confined
geometries, the spin relaxation rate increases by orders of magnitude on
resonance. Here, we present Monte Carlo simulations of this effect to explore
the roles of varying degrees of disorder and strength of spin-orbit
interaction. These simulations help to extract quantitative spin-orbit
parameters from experimental measurements of ballistic spin resonance, and may
guide the development of future spintronic devices
Spin orbit effects in a GaAs quantum dot in a parallel magnetic field
We analyze the effects of spin-orbit coupling on fluctuations of the
conductance of a quantum dot fabricated in a GaAs heterostructure. We argue
that spin-orbit effects may become important in the presence of a large
parallel magnetic field B_{||}, even if they are negligble for B_{||}=0. This
should be manifest in the level repulsion of a closed dot, and in reduced
conductance fluctuations in dots with a small number of open channels in each
lead, for large B_{||}. Our picture is consistent with the experimental
observations of Folk et al.Comment: 5 page
Electron transport through single Mn12 molecular magnets
We report transport measurements through a single-molecule magnet, the Mn12
derivative [Mn12O12(O2C-C6H4-SAc)16(H2O)4], in a single-molecule transistor
geometry. Thiol groups connect the molecule to gold electrodes that are
fabricated by electromigration. Striking observations are regions of complete
current suppression and excitations of negative differential conductance on the
energy scale of the anisotropy barrier of the molecule. Transport calculations,
taking into account the high-spin ground state and magnetic excitations of the
molecule, reveal a blocking mechanism of the current involving non-degenerate
spin multiplets.Comment: Accepted for Phys. Rev. Lett., 5 pages, 4 figure
- …