44 research outputs found

    A partial form of inherited human USP18 deficiency underlies infection and inflammation

    Get PDF
    International audienceHuman USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I–mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-γ–dependent induction of IL-12 and IL-23 is reduced owing to IFN-I–mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease

    Orofacial manifestations in outpatients with anorexia nervosa and bulimia nervosa focusing on the vomiting behavior

    Get PDF
    Objective: This case-control study aims to evaluate the oral health status and orofacial problems in a group of outpatients with eating disorders (ED)—either anorexia nervosa (AN) or bulimia nervosa (BN)—further focusing on the influence of vomit. Materials and methods: Fifty-five women outpatients with AN or BN diagnosis were invited to participate, of which 33 agreed. ED outpatients and matched controls were submitted to a questionnaire and clinical oral examination. Results: Multivariate analysis identified a significantly higher incidence of teeth-related complications (i.e., tooth decay, dental erosion, and self-reported dentin hypersensitivity), periodontal disease, salivary alterations (i.e., hyposalivation and xerostomia), and oral mucosa-related complications in ED outpatients. Dental erosion, self-reported dentin hypersensitivity, hyposalivation, xerostomia, and angular cheilitis were found to be highly correlated with the vomiting behavior. Conclusions: ED outpatients were found to present a higher incidence of oral-related complications and an inferior oral health status, compared to gender- and age-matched controls. Alterations verified within outpatients were acknowledged to be quite similar to those previously reported within inpatients, in both of nature and severity, thus sustaining that the cranio-maxillofacial region is significantly affected by ED, even in the early/milder forms of the condition, as expectedly verified within outpatients.The work was supported by the Faculty of Dental Medicine, U. Porto

    Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    No full text
    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations. Indeed, at these conditions, a decrease in the mitochondrial respiratory chain activity leads to an accumulation of NADH and to a decreased ATP production which uncouples catabolism and anabolism, influences the intracellular pH and leads to production and excretion of organic acids. Moreover, mannitol is being produced in order to ensure reoxidation of NADH, and this is the main cellular response to balance the ratio NADH/NAD at low oxygen availability. Mannitol production is also coupled to low specific growth rate, which suggests a control of carbon catabolite repression on the mannitol pathway. The roles of two other polyols, erythritol and glycerol, were also investigated. Both compounds are known to accumulate intracellularly, at high osmotic pressure, in order to restore the osmotic balance, but we show that the efficiency of this system is affected by a leakage of polyols through the membrane. Biotechnol. Bioeng. 2009;103: 956-965. (C) 2009 Wiley Periodicals, Inc

    Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    No full text
    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations. Indeed, at these conditions, a decrease in the mitochondrial respiratory chain activity leads to an accumulation of NADH and to a decreased ATP production which uncouples catabolism and anabolism, influences the intracellular pH and leads to production and excretion of organic acids. Moreover, mannitol is being produced in order to ensure reoxidation of NADH, and this is the main cellular response to balance the ratio NADH/NAD at low oxygen availability. Mannitol production is also coupled to low specific growth rate, which suggests a control of carbon catabolite repression on the mannitol pathway. The roles of two other polyols, erythritol and glycerol, were also investigated. Both compounds are known to accumulate intracellularly, at high osmotic pressure, in order to restore the osmotic balance, but we show that the efficiency of this system is affected by a leakage of polyols through the membrane. Biotechnol. Bioeng. 2009;103: 956-965. (C) 2009 Wiley Periodicals, Inc
    corecore