219 research outputs found

    Antiangiogenesis: current clinical data and future perspectives

    Get PDF
    Neovascularization is a prerequisite for progressive growth of solid tumors and their metastases. This process is tightly regulated by a large number of proangiogenic and antiangiogenic factors such as VEGF, bFGF and matrix-metalloproteinases. The inhibition of angiogenesis is an innovative therapeutic approach and could represent a powerful adjunct to traditional therapy of malignant tumors. Preclinical trials have been very successful but in clinical studies meaningful response rates could only be shown in some cases. This might indicate the existence of different angiogenic phenotypes in humans. It seems that at present only a part of the interactions between the angiogenic cytokines are known. In addition, new receptor/ligand systems which regulate the neovascularization are being described. This article presents an overview of the most important angiogenically active substances, preclinical and clinical data, surrogate markers as well as future perspectives

    In-Vivo Visualization of Tumor Microvessel Density and Response to Anti-Angiogenic Treatment by High Resolution MRI in Mice

    Get PDF
    Purpose: Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical relevance. Experimental Design: We established an in vivo magnetic resonance imaging (MRI) approach that allows us to simultaneously image tumor microvessel density and tumor vessel size in a NSCLC model in mice. Results: Using microvessel density imaging we demonstrated an increase in microvessel density within 8 days after tumor implantation, while tumor vessel size decreased indicating a switch from macro- to microvessels during tumor growth. Moreover, we could monitor in vivo inhibition of angiogenesis induced by the angiogenesis inhibitor PTK787, resulting in a decrease of microvessel density and a slight increase in tumor vessel size. Conclusions: We present an in vivo imaging approach that allows us to monitor both tumor microvessel density and tumor vessel size in the tumor. Moreover, this approach enables us to assess, early-on, treatment effects on tumor microvessel density as well as on tumor vessel size. Thus, this imaging-based strategy of validating anti-angiogenic treatment effects ha

    The realisation of targeted antitumour therapy

    Get PDF
    Better understanding of the pathways regulating proliferation and metastasis of cancer cells has led to the development of novel molecular-targeted therapies. The number of molecular-targeted agents approved for use in the clinic is growing, with many more in clinical trials. Most of these compounds can be broadly classified into two main categories: monoclonal antibodies and small-molecule tyrosine kinase inhibitors. The pathological processes targeted include vascular endothelial growth factor-dependent tumour angiogenesis and epidermal growth factor receptor-dependent tumour cell proliferation and survival. Unlike conventional chemotherapy, molecular-targeted agents offer the potential advantages of a relatively high therapeutic window and use in combination with other anticancer strategies without overlapping toxicity. It is hoped that these drugs will become valuable therapeutic tools within the multimodal approach to treating cancer. Recent progress in targeted antitumour therapy is discussed, with a focus on antiangiogenesis

    Angiogenesis inhibitors in clinical development; where are we now and where are we going?

    Get PDF
    Angiogenesis is crucial for tumour growth and the formation of metastases. Various classes of angiogenesis inhibitors that are each able to inhibit one of the various steps of this complex process can be distinguished. Results from clinical studies with these agents are summarised. In general, it has been shown that most angiogenesis inhibitors can be safely administered, but that tumour regressions are rare. Combining angiogenesis inhibitors with cytotoxic chemotherapy can enhance anticancer activity. Recently, some promising data with regard to clinical efficacy have been presented. While performing clinical studies with angiogenesis inhibitors, defining biological activity is crucial, but thus far no validated techniques are available. It is conceivable that in the near future various classes of angiogenesis inhibitors will be combined in an attempt to further improve antiangiogenic and anticancer activity

    Antibody Targeting of Cathepsin S Inhibits Angiogenesis and Synergistically Enhances Anti-VEGF

    Get PDF
    Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development. where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis

    The effect of different dosing regimens of motesanib on the gallbladder: a randomized phase 1b study in patients with advanced solid tumors

    Get PDF
    Extent: 11 p.BACKGROUND: Gallbladder toxicity, including cholecystitis, has been reported with motesanib, an orally administered small-molecule antagonist of VEGFRs 1, 2 and 3; PDGFR; and Kit. We assessed effects of motesanib on gallbladder size and function. METHODS: Patients with advanced metastatic solid tumors ineligible for or progressing on standard-of-care therapies with no history of cholecystitis or biliary disease were randomized 2:1:1 to receive motesanib 125 mg once daily (Arm A); 75 mg twice daily (BID), 14-days-on/7-days-off (Arm B); or 75 mg BID, 5-days-on/2-days-off (Arm C). Primary endpoints were mean change from baseline in gallbladder size (volume by ultrasound; independent review) and function (ejection fraction by CCK-HIDA; investigator assessment). RESULTS: Forty-nine patients received ≥1 dose of motesanib (Arms A/B/C, n = 25/12/12). Across all patients, gallbladder volume increased by a mean 22.2 cc (from 38.6 cc at baseline) and ejection fraction decreased by a mean 19.2% (from 61.3% at baseline) during treatment. Changes were similar across arms and appeared reversible after treatment discontinuation. Three patients had cholecystitis (grades 1, 2, 3, n = 1 each) that resolved after treatment discontinuation, one patient developed grade 3 acute cholecystitis requiring cholecystectomy, and two patients had other notable grade 1 gallbladder disorders (gallbladder wall thickening, gallbladder dysfunction) (all in Arm A). Two patients developed de novo gallstones during treatment. Twelve patients had right upper quadrant pain (Arms A/B/C, n = 8/1/3). The incidence of biliary “sludge” in Arms A/B/C was 39%/36%/27%. CONCLUSION: Motesanib treatment was associated with increased gallbladder volume, decreased ejection fraction, biliary sludge, gallstone formation, and infrequent cholecystitis. Trial registration: ClinicalTrials.gov NCT00448786Lee S. Rosen, Lara Lipton, Timothy J. Price, Neil D. Belman, Ralph V. Boccia, Herbert I. Hurwitz, Joe J. Stephenson Jr., Lori J. Wirth, Sheryl McCoy, Yong-jiang Hei, Cheng-Pang Hsu and Niall C. Tebbut

    Inhibitory effect on expression of angiogenic factors by antiangiogenic agents in renal cell carcinoma

    Get PDF
    Since it has been widely recognised that renal cell carcinoma is refractory to standard therapies such as chemotherapy and radiotherapy, a new modality of treatment is needed. One of the potential alternative therapies for renal cell carcinoma may be inhibition of angiogenesis. In this study, we analysed the inhibitory effects of several potential agents on expression of angiogenic factors such as vascular endothelial growth factor and basic fibroblast growth factor, which are the main mediators in angiogenesis of renal cell carcinoma. We used medroxyprogesterone acetate, interferon-alpha, interferon-gamma, minocycline hydrochrolide and genistein, which are known to be antiangiogeneic. Northern blot analyses revealed that, among the five agents examined, genistein had a strong inhibitory effect on expression of vascular endothelial growth factor mRNA and basic fibroblast growth factor mRNA. Medroxyprogesterone acetate and interferon-alpha did not significantly decrease the level of either vascular endothelial growth factor mRNA or basic fibroblast growth factor mRNA. Interferon-gamma and minocycline had mild inhibitory effects on vascular endothelial growth factor mRNA and basic fibroblast growth factor mRNA expression. Genistein also inhibited both vascular endothelial growth factor mRNA and basic fibroblast growth factor mRNA expression after treatment with epidermal growth factor and hypoxia. These findings suggest that one of the mechanisms of the inhibition of angiogenesis by genistein is suppression of the expression of the angiogenic factors vascular endothelial growth factor and basic fibroblast growth factor in renal cell carcinoma

    Pharmacological Inhibition of Nicotinamide Phosphoribosyltransferase/Visfatin Enzymatic Activity Identifies a New Inflammatory Pathway Linked to NAD

    Get PDF
    Nicotinamide phosphoribosyltransferase (NAMPT), also known as visfatin, is the rate-limiting enzyme in the salvage pathway of NAD biosynthesis from nicotinamide. Since its expression is upregulated during inflammation, NAMPT represents a novel clinical biomarker in acute lung injury, rheumatoid arthritis, and Crohn's disease. However, its role in disease progression remains unknown. We report here that NAMPT is a key player in inflammatory arthritis. Increased expression of NAMPT was confirmed in mice with collagen-induced arthritis, both in serum and in the arthritic paw. Importantly, a specific competitive inhibitor of NAMPT effectively reduced arthritis severity with comparable activity to etanercept, and decreased pro-inflammatory cytokine secretion in affected joints. Moreover, NAMPT inhibition reduced intracellular NAD concentration in inflammatory cells and circulating TNFα levels during endotoxemia in mice. In vitro pharmacological inhibition of NAMPT reduced the intracellular concentration of NAD and pro-inflammatory cytokine secretion by inflammatory cells. Thus, NAMPT links NAD metabolism to inflammatory cytokine secretion by leukocytes, and its inhibition might therefore have therapeutic efficacy in immune-mediated inflammatory disorders
    corecore