307 research outputs found

    An Examination of the Interactive Effects of Mindfulness and Stress on Negative Health Habits in a Primary Care Population

    Get PDF
    The overarching goal of this study was to better understand relationships between health habits, stress, and mindfulness. In doing so, this research examined the interaction of mindfulness with responses to stress as it affects negative health habits. There was also a psychometric development study conducted, using confirmatory factor analyses (CFA) to test the applicability of the two-factor model of the PHLMS to a primary care population. Data were collected from 198 adult patients in a primary care medical practice. Participants ranged in age from 18 to 89 years old, were 51% female, and 92% Caucasian. For CFA analyses, three fit indexes were examined, and fit indexes marginally supported a two-factor model ( 2/df = 2.26, CFI = .871, TLI = .851, RMSEA = .08). Despite differences in goodness of fit between this researcher’s data and the original model, it was found that the two-factor structure of the PHLMS demonstrated acceptable reliability and consistency when administered to a primary care population. Multiple linear regression analyses were then conducted to test the moderator hypothesis of Mindfulness; these regressions approached significance but did not achieve statistical significance. Although mindfulness was not found to moderate the relationship between stress and health behaviors, a further suggestion is to investigate the relationships between mindfulness, particularly mindful or nonjudgmental acceptance, and stress, as well as relationships between stress and health habits. This research demonstrated a clear relationship between acceptance as a factor of mindfulness, and stress. Based on these results, it is suggested that further investigation be carried out into the usefulness of acceptance-based interventions with chronically stressed primary care populations

    Short gamma-ray bursts within 200 Mpc

    Get PDF
    We present a systematic search for short-duration gamma-ray bursts (GRBs) in the local Universe based on 14 yr of observations with the Neil Gehrels Swift Observatory. We cross-correlate the GRB positions with the GLADE catalogue of nearby galaxies, and find no event at a distance ≲100 Mpc and four plausible candidates in the range 100 Mpc ≲ D ≲ 200 Mpc. Although affected by low statistics, this number is higher than the one expected for chance alignments to random galaxies, and possibly suggests a physical association between these bursts and nearby galaxies. By assuming a local origin, we use these events to constrain the range of properties for X-ray counterparts of neutron star mergers. Optical upper limits place tight constraints on the onset of a blue kilonova, and imply either low masses (⁠≲10−3M⊙⁠) of lanthanide-poor ejecta or unfavorable orientations (θ_(obs) ≳ 30 deg). Finally, we derive that the all-sky rate of detectable short GRBs within 200 Mpc is 1.3^(+1.7)_(−0.8) yr⁻¹ (68 per cent confidence interval), and discuss the implications for the GRB outflow structure. If these candidates are instead of cosmological origin, we set a upper limit of ≲2.0 yr⁻¹ (90 per cent confidence interval) to the rate of nearby events detectable with operating gamma-ray observatories, such as Swift and Fermi

    A luminous precursor in the extremely bright GRB 230307A

    Full text link
    GRB 230307A is an extremely bright long duration GRB with an observed gamma-ray fluence of \gtrsim3×\times103^{-3} erg cm2^{-2} (10--1000 keV), second only to GRB 221009A. Despite its long duration, it is possibly associated with a kilonova, thus resembling the case of GRB 211211A. In analogy with GRB 211211A, we distinguish three phases in the prompt gamma-ray emission of GRB 230307A: an initial short duration, spectrally soft emission; a main long duration, spectrally hard burst; a temporally extended and spectrally soft tail. We intepret the initial soft pulse as a bright precursor to the main burst and compare its properties with models of precursors from compact binary mergers. We find that to explain the brightness of GRB 230307A, a magnetar-like (1015\gtrsim 10^{15} G) magnetic field should be retained by the progenitor neutron star. Alternatively, in the post-merger scenario, the luminous precursor could point to the formation of a rapidly rotating massive neutron star.Comment: 9 pages, 5 figures, 2 tables, submitte

    Short gamma-ray bursts within 200 Mpc

    Get PDF
    We present a systematic search for short-duration gamma-ray bursts (GRBs) in the local Universe based on 14 yr of observations with the Neil Gehrels Swift Observatory. We cross-correlate the GRB positions with the GLADE catalogue of nearby galaxies, and find no event at a distance ≲100 Mpc and four plausible candidates in the range 100 Mpc ≲ D ≲ 200 Mpc. Although affected by low statistics, this number is higher than the one expected for chance alignments to random galaxies, and possibly suggests a physical association between these bursts and nearby galaxies. By assuming a local origin, we use these events to constrain the range of properties for X-ray counterparts of neutron star mergers. Optical upper limits place tight constraints on the onset of a blue kilonova, and imply either low masses (⁠≲10−3M⊙⁠) of lanthanide-poor ejecta or unfavorable orientations (θ_(obs) ≳ 30 deg). Finally, we derive that the all-sky rate of detectable short GRBs within 200 Mpc is 1.3^(+1.7)_(−0.8) yr⁻¹ (68 per cent confidence interval), and discuss the implications for the GRB outflow structure. If these candidates are instead of cosmological origin, we set a upper limit of ≲2.0 yr⁻¹ (90 per cent confidence interval) to the rate of nearby events detectable with operating gamma-ray observatories, such as Swift and Fermi

    Reverse Shock Emission Revealed in Early Photometry in the Candidate Short GRB 180418A

    Get PDF
    We present observations of the possible short GRB 180418A in γ\gamma-rays, X-rays, and in the optical. Early optical photometry with the TAROT and RATIR instruments show a bright peak (\approx 14.2 AB mag) between T+28T+28 and T+90T+90 seconds that we interpret as the signature of a reversal shock. Later observations can be modeled by a standard forward shock model and show no evidence of jet break, allowing us to constrain the jet collimation to θj>7\theta_j> 7^\circ. Using deep late-time optical observations we place an upper limit of r>24r>24 AB mag on any underlying host galaxy. The detection of the afterglow in the \textit{Swift} UV filters constrains the GRB redshift to z<1.3z<1.3 and places an upper bound on the γ\gamma-ray isotropic equivalent energy Eγ,iso<3×1051E_{\rm{\gamma,iso}} < 3 \times 10^{51} erg. The properties of this GRB (e.g. duration, hardness ratio, energetic, and environment) lie at the intersection between short and long bursts, and we can not conclusively identify its type. We estimate that the probability that it is drawn from the population of short GRBs is 10\%-30\%.Comment: Accepted por publication in Ap

    A deep survey of short GRB host galaxies over z02z\sim0-2: implications for offsets, redshifts, and environments

    Get PDF
    A significant fraction (\sim30\%) of well-localized short gamma-ray bursts (sGRBs) lack a coincident host galaxy. This leads to two main scenarios: \textit{i}) that the progenitor system merged outside of the visible light of its host, or \textit{ii}) that the sGRB resided within a faint and distant galaxy that was not detected by follow-up observations. Discriminating between these scenarios has important implications for constraining the formation channels of neutron star mergers, the rate and environments of gravitational wave sources, and the production of heavy elements in the Universe. In this work, we present the results of our observing campaign targeted at 31 sGRBs that lack a putative host galaxy. Our study effectively doubles the sample of well-studied sGRB host galaxies, now totaling 72 events of which 28%28\% lack a coincident host galaxy to deep limits (rr\,\gtrsim\,2626 or F110WF110W\,\gtrsim\,2727 AB mag), and represents the largest homogeneously selected catalog of sGRB offsets to date. We find that 70\% of sub-arcsecond localized sGRBs occur within 10 kpc of their host's nucleus, with a median projected physical offset of 5.65.6 kpc. Using this larger population, we discover a redshift evolution in the locations of sGRBs: bursts at low-zz occur at 2×2\times larger offsets compared to those at zz\,>>\,0.50.5. Furthermore, we find evidence for a sample of hostless sGRBs at zz\,\gtrsim\,11 that are indicative of a larger high-zz population, further constraining the sGRB redshift distribution and disfavoring log-normal delay time models.Comment: Submitted to MNRAS. 39 pages, 18 Figures, 4 Table

    The CGM-GRB Study. II. Outflow-Galaxy Connection at z similar to 2-6

    Get PDF
    We use a sample of 27 gamma-ray bursts (GRBs) at redshift z = 2-6 to probe the outflows in their respective host galaxies (log(M ∗/M ⊙) ∼9-11) and search for possible relations between the outflow properties and those of the host galaxies, such as M ∗, the star formation rate (SFR), and the specific SFR (sSFR). First, we consider three outflow properties: outflow column density (N out), maximum outflow velocity (V max), and normalized maximum velocity (V norm = V max/V circ,halo, where V circ,halo is the halo circular velocity). We observe clear trends of N out and V max with increasing SFR in high-ion-traced outflows, with a stronger (>3σ) V max-SFR correlation. We find that the estimated mass outflow rate and momentum flux of the high-ion outflows scale with SFR and can be supported by the momentum imparted by star formation (supernovae and stellar winds). The kinematic correlations of high-ion-traced outflows with SFR are similar to those observed for star-forming galaxies at low redshifts. The correlations with SFR are weaker in low-ion outflows. This, along with the lower detection fraction in low-ion outflows, indicates that the outflow is primarily high-ion dominated. We also observe a strong (>3σ) trend of normalized velocity (V norm) decreasing with halo mass and increasing with sSFR, suggesting that outflows from low-mass halos and high-sSFR galaxies are most likely to escape and enrich the outer circumgalactic medium (CGM) and intergalactic medium with metals. By comparing the CGM-GRB stacks with those of starbursts at z ∼2 and z ∼0.1, we find that over a broad redshift range, the outflow strength strongly depends on the main-sequence offset at the respective redshifts, rather than simply the SFR

    Left to Their Own Devices: Breakdowns in United States Medical Device Premarket Review

    Get PDF
    Using examples from recent FDA regulatory proceedings, Jonas Hines and colleagues critique the medical device premarket review and identify eight weaknesses in the process that should be remedied
    corecore