6,131 research outputs found

    Optofluidic fabrication for 3D-shaped particles.

    Get PDF
    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated

    On applying the set covering model to reseeding

    Get PDF
    The Functional BIST approach is a rather new BIST technique based on exploiting embedded system functionality to generate deterministic test patterns during BIST. The approach takes advantages of two well-known testing techniques, the arithmetic BIST approach and the reseeding method. The main contribution of the present paper consists in formulating the problem of an optimal reseeding computation as an instance of the set covering problem. The proposed approach guarantees high flexibility, is applicable to different functional modules, and, in general, provides a more efficient test set encoding then previous techniques. In addition, the approach shorts the computation time and allows to better exploiting the tradeoff between area overhead and global test length as well as to deal with larger circuits

    Optimal stochastic modelling with unitary quantum dynamics

    Full text link
    Identifying and extracting the past information relevant to the future behaviour of stochastic processes is a central task in the quantitative sciences. Quantum models offer a promising approach to this, allowing for accurate simulation of future trajectories whilst using less past information than any classical counterpart. Here we introduce a class of phase-enhanced quantum models, representing the most general means of causal simulation with a unitary quantum circuit. We show that the resulting constructions can display advantages over previous state-of-art methods - both in the amount of information they need to store about the past, and in the minimal memory dimension they require to store this information. Moreover, we find that these two features are generally competing factors in optimisation - leading to an ambiguity in what constitutes the optimal model - a phenomenon that does not manifest classically. Our results thus simultaneously offer new quantum advantages for stochastic simulation, and illustrate further qualitative differences in behaviour between classical and quantum notions of complexity.Comment: 9 pages, 5 figure

    Interfering trajectories in experimental quantum-enhanced stochastic simulation

    Full text link
    Simulations of stochastic processes play an important role in the quantitative sciences, enabling the characterisation of complex systems. Recent work has established a quantum advantage in stochastic simulation, leading to quantum devices that execute a simulation using less memory than possible by classical means. To realise this advantage it is essential that the memory register remains coherent, and coherently interacts with the processor, allowing the simulator to operate over many time steps. Here we report a multi-time-step experimental simulation of a stochastic process using less memory than the classical limit. A key feature of the photonic quantum information processor is that it creates a quantum superposition of all possible future trajectories that the system can evolve into. This superposition allows us to introduce, and demonstrate, the idea of comparing statistical futures of two classical processes via quantum interference. We demonstrate interference of two 16-dimensional quantum states, representing statistical futures of our process, with a visibility of 0.96 ±\pm 0.02.Comment: 9 pages, 5 figure

    NonClassicality Criteria in Multiport Interferometry

    Get PDF
    Interference lies at the heart of the behavior of classical and quantum light. It is thus crucial to understand the boundaries between which interference patterns can be explained by a classical electromagnetic description of light and which, on the other hand, can only be understood with a proper quantum mechanical approach. While the case of two-mode interference has received a lot of attention, the multimode case has not yet been fully explored. Here we study a general scenario of intensity interferometry: we derive a bound on the average correlations between pairs of output intensities for the classical wavelike model of light, and we show how it can be violated in a quantum framework. As a consequence, this violation acts as a nonclassicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also develop a criterion that can certify the impossibility of dividing a given interferometer into two independent subblocks.Comment: 5 + 3 pages, published versio

    Smaller public keys for MinRank-based schemes

    Full text link
    MinRank is an NP-complete problem in linear algebra whose characteristics make it attractive to build post-quantum cryptographic primitives. Several MinRank-based digital signature schemes have been proposed. In particular, two of them, MIRA and MiRitH, have been submitted to the NIST Post-Quantum Cryptography Standardization Process. In this paper, we propose a key-generation algorithm for MinRank-based schemes that reduces the size of the public key to about 50% of the size of the public key generated by the previous best (in terms of public-key size) algorithm. Precisely, the size of the public key generated by our algorithm sits in the range of 328-676 bits for security levels of 128-256 bits. We also prove that our algorithm is as secure as the previous ones

    A Low-Cost FPGA-Based Test and Diagnosis Architecture for SRAMs

    Get PDF
    The continues improvement of manufacturing technologies allows the realization of integrated circuits containing an ever increasing number of transistors. A major part of these devices is devoted to realize SRAM blocks. Test and diagnosis of SRAM circuits are therefore an important challenge for improving quality of next generation integrated circuits. This paper proposes a flexible platform for testing and diagnosis of SRAM circuits. The architecture is based on the use of a low cost FPGA based board allowing high diagnosability while keeping costs at a very low leve

    Defective Behaviour of an 8T SRAM Cell with Open Defects

    Get PDF
    The defective behaviour of an 8T SRAM cell with open defects is analyzed. Full and resistive open defects have been considered in the electrical characterization of the defective cell. Due to the similarity between the classical 6T SRAM cell and the 8T cell, only defects affecting the read port transistors have been considered. In the work, it is shown how an open in a defective cell may influence the correct operation of a victim cell sharing the same read circuitry. Also, it is shown that the sequence of bits written on the defective cell prior to a read action can mask the presence of the defect. Different orders of critical resistance have been found depending on the location of the open defect. A 45nm technology has been used for the illustrative example presented in the wor

    Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures

    Full text link
    The free-carrier screening of macroscopic polarization fields in wurtzite GaN/InGaN quantum wells lasers is investigated via a self-consistent tight-binding approach. We show that the high carrier concentrations found experimentally in nitride laser structures effectively screen the built-in spontaneous and piezoelectric polarization fields, thus inducing a ``field-free'' band profile. Our results explain some heretofore puzzling experimental data on nitride lasers, such as the unusually high lasing excitation thresholds and emission blue-shifts for increasing excitation levels.Comment: RevTeX 4 pages, 4 figure
    corecore