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Interference lies at the heart of the behavior of classical and quantum light. It is thus crucial to understand
the boundaries between which interference patterns can be explained by a classical electromagnetic
description of light and which, on the other hand, can only be understood with a proper quantum
mechanical approach. While the case of two-mode interference has received a lot of attention, the
multimode case has not yet been fully explored. Here we study a general scenario of intensity
interferometry: we derive a bound on the average correlations between pairs of output intensities for
the classical wavelike model of light, and we show how it can be violated in a quantum framework. As a
consequence, this violation acts as a nonclassicality witness, able to detect the presence of sources with
sub-Poissonian photon-number statistics. We also develop a criterion that can certify the impossibility of
dividing a given interferometer into two independent subblocks.
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Hong, Ou, and Mandel (HOM) discovered that if two
independent and indistinguishable photons, in pure quan-
tum states, impinge on the two input ports of a balanced
beam splitter, they always bunch together and exit the
apparatus from the same output port [1]. This simple effect
has many consequences, e.g., in distinguishability testing
[2], linear-optical quantum computing [3], entanglement
detection [4] or swapping [5], and metrology [6–9]. The
nonclassicality of this phenomenon can be well understood
by repeating the experiment many times, and by recording
the intensities I1, I2 at the two output ports: labeling the
average over many runs by h·i, the correlation function,

G12 ¼
hI1I2i
hI1ihI2i

; ð1Þ

will bezero in the ideal case,becauseoneach run the intensity
at one of the two ports will vanish. G12 has a well-defined
classical limit, which makes it a suitable candidate to use in
distinguishing quantum light beams from classical ones.We
can either consider completely distinguishable photons, i.e.,
single excitations occupying orthogonal space-time modes,
or pulses of classical light, described by electromagnetic
fields. In both cases, if they are emitted by statistically
independent sourcesandinjected into thebeamsplitter,G12 is
constrained to be greater than or equal to 1=2 [10,11].
Therefore, the value G12 ¼ 0 obtained in the ideal HOM
effect represents a strong signature of nonclassicality.

Several authors have investigated interference effects of
noninteracting particles with the aim of reproducing or
generalizing HOM’s result to different situations (see
Refs. [12,13]) not necessarily constrained to linear optics
[14–18]. However, photonics remains the physical platform
of choice for these studies, since it is now possible to prepare
and manipulate several photons in ambient laboratory con-
ditions, which can then be injected into multimode interfer-
ometers [19–26]. The recent investigations of many-particle
interference effects have revealed a need for a deeper
understanding of the phenomenon. On the computational
side, boson sampling is a feasible candidate to show the
possibility of outperforming classical computers exploiting
the laws of quantum mechanics [23,24,27–31]. From a
foundational perspective, on the other hand, the interplay
between the wavelike behavior of photons and the many-
particle interference effects arising due to their bosonic
nature is not well understood [13,32–37]. This is an
important issue because these two features heavily influence
the probabilities of detection events, often leading to
counterintuitive results [32,36,37]. Typically, these studies
compare their findings with the evolution of completely
distinguishable photons; this retains the quantization of the
number of particles, but removes interparticle interference.
In this Letter we make the complementary choice, by

studying the alternative classical regime where independent
sources emit light pulses fully described in terms of their
electric field. As already mentioned, in a situation with two
sources and two detectors, the classical bound G12 ≥ 1=2
holds, which can be maximally violated by the HOM setup,
i.e., G12 ¼ 0. It is, therefore, natural to ask how this result
can be extended to a more general framework, with an
arbitrary number of sources and detectors. Here we provide
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an answer to this question, by finding a tight lower bound
for the correlations that can arise among the output inten-
sities of a generic multiport interferometer, when the
aforementioned classical sources are used. By using a
quantum mechanical approach, we then study “if” and
“by how much” quantum input states of light can violate
this threshold. Finally, we show how our findings allow us to
develop a sufficient criterion that can certify the impossibil-
ity of dividing an interferometer into independent subblocks.
Correlation function.—In characterizing the correlations

among several detected intensities, say, M ≥ 2, we have to
choose a generalization ofG12, defined in Eq. (1). Recently,
several authors have considered higher-order correlation
functions (i.e., in which the average involves products of
more than two intensities) to study multiparticle interfer-
ence [34,38] or to obtain advantages in imaging resolution
[39–42]. On the other hand, Walschaers et al. showed that
the simpler quantity hIiIji − hIiihIji can yield information
on the statistics of the interfering particles [43] and on their
distinguishability [44] if it is averaged over many output
modes of a generic interferometer. We introduce a similar
but slightly different quantifier, obtained as the normalized
average,

G ¼ 1

ðM
2
Þ
X
i<j

hIiIji
hIiihIji

; ð2Þ

where i < j enforces the sum to be over all pairs of
detectors. The normalization chosen in Eq. (2) assures that
G does not depend on the average intensities, but only on
their correlations: this is a necessary condition to obtain a
classical bound independent of the total intensities of the
sources. With respect to considering higher-order correla-
tors, G has the advantage of being composed of many
simpler contributions, while still taking into account all
available data. Moreover, the measure of G only requires
the simultaneous intensity readouts in two detectors, thus
allowing a quicker experimental estimation in the presence
of detector inefficiencies. We also point out that the
experimental effort required to estimate hIiIji, and there-
fore G, has a polynomial scaling with the number of
sources and photon-number resolving detectors [43].
Finally, note that only detectors with hIii ≠ 0 (i.e., receiv-
ing a nonzero amount of light) should be considered in the
average of Eq. (2), in order to keep G well defined.
Description of the setup.—We now describe the inter-

ferometric setup, sketched in Fig. 1, in the classical and
quantum scenario. In both cases pulses of light are emitted
by N sources and are detected by M detectors after a linear
evolution. As in the HOM setup, in each realization the
phases of the pulses are chosen randomly in ½0; 2π�, the
sources are independent, and are allowed to be stochastic.
More precisely, at every run of the experiment in the
classical case the αth source emits the electric field
~Eα;ξαðtÞ ¼ AαðξαÞ~ζðξαÞðtÞ with probability pαðξαÞ. Here

AαðξαÞ is a complex number whose phase changes ran-

domly from one pulse to the other, while ~ζðξαÞα ðtÞ defines the
mode of the field. In particular, if f~ϵω;λgλ are orthonormal
polarization vectors, one has

~ζðξαÞα ðtÞ ¼
X
λ

Z
dω

ffiffiffiffiffiffiffi
ℏω
2π

r
gω;λðξαÞe−iωt~ϵω;λ; ð3Þ

where the coefficients fgω;λðξαÞg depend on the value
of the random variable ξα and satisfy the relationP

λ

R
dωjgω;λðξαÞj2 ¼ 1. We added the factor ℏω only to

ease the comparison with the quantum case later on, but
classically it could be included in gω;λ and Aα. The linear
evolution can then be represented via a complex transfer

matrix T, which maps the input fields f~Eα;ξαg to those at the
detectors’ positions, labeled by i ¼ 1;…;M:

~Oi;~ξðtÞ ¼
XN
α¼1

Tiα
~Eα;ξαðt − τiαÞ; ð4Þ

where τiα are the evolution times and ~ξ ¼ ðξ1;…; ξNÞ.
The intensity measured by the ith detector will therefore be,
up to a dimensional proportionality factor,

Ii;~ξ ¼
Z þτM=2

−τM=2
dt ~O�

i;~ξðtÞ · ~Oi;~ξðtÞ; ð5Þ

where we consider the measurement time τM to be much
longer than the other time scales, so that the integration can

FIG. 1. Sketch of the setup described in the main text, with N
sources and M detectors. In the classical (quantum) picture the
interferometer is characterized by the transfer matrix T (U), while

the colored circles represent the light pulses ~Eα;ξαðtÞ (the states

jφðξαÞ
α i). In the quantum framework the number m of interfero-

metric modes has to be greater than N and M: if the inequalities
are strict there will be vacuum inputs and nonmonitored outputs.
If at least two detections are successful, the event can be used for
the evaluation of Ḡ.
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be equivalently performed over the whole real axis. This
means that the detectors measure a quantity proportional
to the energy, or integrated flux, of the light pulses.
The quantities hIii and hIiIji are then obtained by averag-

ing over the configurations f~ξg. Note that their evaluation is
simplified by the following relations imposed by the
randomness of the phase characterizing each pulse of light:
hAαi ¼ hAαAβi ¼ 0 and hA�

αAβi ¼ δα;βhjAαj2i.
In order to move to a quantum picture, an operator for the

electric field emitted by each source is defined as

ÊαðtÞ ¼
X
λ

Z
dω

ffiffiffiffiffiffiffi
ℏω
2π

r
âα;ω;λe−iωt~ϵω;λ; ð6Þ

up to an irrelevant factor, where the bosonic annihilation
operators fâα;ω;λg satisfy the canonical commutation rela-
tions ½âα;ω;λ; â†β;ω0;λ0 � ¼ δα;βδλ;λ0δðω − ω0Þ (see Ref. [45]).
With probability pαðξαÞ, the αth source then emits the
quantum state

jφðξαÞ
α i ¼

X∞
n¼0

φðξαÞ
α ðnÞðâ†α;ξαÞnj0i; ð7Þ

where the amplitudes fφðξαÞ
α ðnÞgn depend on the random

variable ξα, j0i represents the vacuum, and âα;ξα can be
decomposed as

âα;ξα ¼
X
λ

Z
dωg�ω;λðξαÞâα;ω;λ: ð8Þ

However, note that the coherence between different photon
numbers in Eq. (7) is lost once we average over many
realizations of the same pulse, because each of them is
emitted with a random phase multiplying g�ω;λ in Eq. (8). In
this scenario, it is natural to inject the emitted states in an
m ×m linear optical interferometer, with m ≥ M, N. For

any given realization ~ξ of the sources, the output modes will
be characterized by the set of operators fb̂i;~ξgmi¼1, obtained

as b̂i;~ξ ¼
P

m
α¼1 Uiαâα;ξα , where U is a unitary matrix that

plays a role analogous to the classical T. The intensities
appearing in Eq. (2) are obtained, up to a dimensional
proportionality factor, by taking the expectation value of
the operators Îi and ÎiÎj on the input state, where

Îi ¼
Z þτM=2

−τM=2
dtÊ†

i ðtÞÊiðtÞ ¼
X
λ

Z
dωb̂†i;ω;λb̂i;ω;λℏω: ð9Þ

For the sake of simplicity, in the following we will
assume that the mode of the emitted fields is characterized
by the same weights gω;λðξ0Þ for all sources and all
realizations, and that the evolution times τiα are all the
same. Intuitively, these conditions maximize the interfer-
ence and in the classical case lead to the minimum value of
Eq. (2) (see Ref. [46] for the proof). With these hypotheses,

it turns out that the averaged intensities that appear in the
classical or quantum expression of G are proportional
to E ¼ P

λ

R
dωℏωjgω;λðξ0Þj2 [46], which represents the

energy associated with the chosen mode. In particular,

classically one has Ii;~ξ ¼ EAið~ξÞ�Aið~ξÞ, where Aið~ξÞ ¼P
N
α¼1 TiαAαðξαÞ, while in the quantum case, one finds

hÎii ¼ ETr½ρ̂b̂†i;ξ0 b̂i;ξ0 �; ð10Þ

hÎiÎji ¼ E2Tr½ρ̂b̂†i;ξ0 b̂
†
j;ξ0

b̂i;ξ0 b̂j;ξ0 �: ð11Þ

This is intuitive because the intensity of the quantum field
is directly connected with the photon number, when each
photon carries the same amount of energy. In Eqs. (10)
and (11), ρ̂ is the average emitted state,

ρ̂ ¼ ⊗
N

α¼1

X
nα

qαðnαÞ
nα!

ðâ†α;ξ0Þnα j0ih0jðâα;ξ0Þnα ; ð12Þ

where qð~nÞ ¼ q1ðn1Þ…qNðnNÞ is the effective probability
distribution of the process [47]. In the following, when
Eq. (2) is calculated in the classical or quantum regime, it
will be written, respectively, as GðclÞ or GðQÞ. We will also
drop the label ξ0 from the bosonic operators.
Classical bound.—We now look for the minimum value

thatGðclÞ can take. This will be the benchmark against which
the results of an experiment must be compared in order to
certify a nonclassical behavior, i.e., the impossibility of
simulating the same result with only classical resources.
Explicit calculations yield hIii ¼ E

P
N
α¼1 jTiαj2hjAαj2i and

hIiIji ¼ hIiihIji þ E2
XN
α≠β

TiαT�
iβTjβT�

jαhjAαj2ihjAβj2i

þ E2
XN
α¼1

jTiαj2jTjαj2½hjAαj4i − hjAαj2i2�; ð13Þ

where the last (positive) term vanishes for sources with
fixed intensity, which are, therefore, optimal. The remaining
minimization can be performed by defining a set
ofM normalized vectorsψ i ∈ CN with componentsψ iðαÞ ¼
T�
iα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EhjAαj2i=hIii

p
, which allow us to rewrite GðclÞ as

GðclÞ ¼ 1þ 1

ðM
2
Þ
XM
i<j

�
jψ�

i · ψ jj2 −
XN
α¼1

jψ iðαÞψ jðαÞj2
�
;

ð14Þ
where ψ�

i · ψ j ¼
P

αψ
�
i ðαÞ · ψ jðαÞ. This expression can be

minimized with respect to the vectors ψ i (see the Appendix),
yielding

minGðclÞ
N;M ¼

�
1 − N−1

NðM−1Þ if N ≤ M

1 − 1
M if N ≥ M;

ð15Þ
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where the subscripts on the left-hand side emphasize the
dependence on the number of sources and detectors (respec-
tively,N andM).Wecanverifythat theminimumisreachedby
letting light fields with the same input intensity evolvewith a
highly symmetric T: the M ×M Fourier transform matrix
(FTM),whose(j,α) element isgivenbye2πiðj−1Þðα−1Þ=M=

ffiffiffiffiffi
M

p
.

Intuitively, this interferometric apparatusyields theminimum
output correlations because it leads to a high degree of
interference: the input intensities are equally split among
all outputs and the phases are symmetrically distributed over
2π. We point out that, when N > M, the configuration that
achieves the 1 − 1=M bound completely ignores N −M
sources (see the Appendix), whose light fields never reach
thedetectors.This setup is, therefore, effectively equivalent to
a symmetric one smaller in size, with only M sources and
detectors.
Quantum description.—The explicit evaluation of

Eqs. (10) and (11) follows the steps of other studies (see
Refs. [34,43,44]), and for the input state in Eq. (12), one
finds hÎii ¼ E

P
m
α¼1 jUiαj2hn̂αiq and

hÎiÎji ¼ hÎiihÎji þ E2
Xm
α≠β

UiαU�
iβUjβU�

jαhn̂αiqhn̂βiq

þ E2
Xm
α¼1

jUiαj2jUjαj2½ðhn̂2αiq − hn̂αi2qÞ − hn̂αiq�;

ð16Þ

where n̂α ¼ â†αâα and the subscript q reminds us of the
effective probability distribution appearing in Eq. (12). Note
that if there are more interferometric modes than sources
(i.e., N < m), we can trivially extend the definition of ρ̂ in
Eq. (12) by considering qα>NðnαÞ ¼ δnα;0. Apart from the
natural correspondences U ↔ T and hn̂αiq ↔ hjAαj2i, we
can seehow themaindifferencebetween the classical and the
quantum quantities lies in the presence of a negative term
linear in n̂α in Eq. (16). Its origin is a direct consequence of
the photon-number quantization via the relation
hnjâ†2â2jni ¼ nðn − 1Þ. This immediately shows that a
necessary condition to observe a violation of the bound in
Eq. (15) is that the effective photon-number statistics has to
be sub-Poissonian for some source; i.e.,

∃α∶ hn̂2αiq − hn̂αi2q ≤ hn̂αiq: ð17Þ

For example, as the squeezed vacuum is super-Poissonian,
this is immediately excluded fromviolating Eq. (15), despite
being considered nonclassical in other situations. The con-
dition in Eq. (17), however, is not sufficient to guarantee
values of GðQÞ smaller than the classical threshold, because
other inputs might have large intensity fluctuations which
prevent the bound from being violated. On the other hand,
similarly to the two-mode case [48], a single sub-Poissonian
source could be sufficient to violate Eq. (15), for example,

when coherent states with the same average intensity as the
tested input are injected in all other ports. As could be
expected, in the particular case in which all quantum sources
emit coherent states (with phases randomly chosen) of
amplitudes γα, Eq. (16) reduces to Eq. (13), with γα playing
the role of Aα.
After having shown that the violation of the bound in

Eq. (15) is possible for certain nonclassical states of light,
we now study to what extent this threshold could be beaten.
The presence in Eq. (16) of a term that is linear in the
number of photons makes the minimization of GðQÞ
considerably harder than its classical counterpart.
However, an analytical minimum can be found at least
in the symmetric case where states with the same sub-
Poissonian photon-number statistics qðnÞ are injected in
every input port (situation labeled by “sym”). Although not
general, this case is of interest in the study of many-particle
interference effects, where the presence of vacuum inputs is
not required as it would be in boson sampling. A symmetric
setup allows a more intuitive and balanced picture
and has been the study of several investigations (see
Refs. [12,13,21]). In this case, all the information on the
input statistics is given by

0 ≤ ηðqÞ ¼ −
hn̂2iq − hn̂i2q − hn̂iq

hn̂i2q
≤ 1; ð18Þ

whose positivity signals sub-Poissonian input states while
its maximum value of 1 is reached for single-photon
sources. With an approach analogous to the classical case,
we can define the complex vectors ~ψ i ∈ CN¼m with

components ~ψ iðαÞ ¼ U�
iα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ehn̂αiq=hÎii

q
. The output corre-

lations measured by G become then

GðQÞ
sym ¼ 1þ 1þ ηðqÞ

ðM
2
Þ

XM
i<j

�
j ~ψ�

i · ~ψ jj2−
XN
α¼1

j ~ψ iðαÞ ~ψ jðαÞj2
�
;

ð19Þ

where we exploited the normalization ~ψ�
i · ~ψ j ¼ δi;j due to

the symmetry condition and the unitarity of U. A com-
parison with Eq. (14) immediately yields

minGðQ;symÞ
N¼m;M ¼ 1 −

1þ ηðqÞ
M

≤ minGðclÞ
N¼m;M; ð20Þ

with the minimum value reached by the same optimal
interferometer of the classical case, obtained by choosing
U to be the m ×m FTM previously defined. This setup can
be built inwaveguides by using a number of components that
scales efficiently with the system dimensionality [49] and
was recently proposed as a tool to distinguish real bosonic
interference from semiclassical imitations, a problem of
interest for the certification of boson sampling [50]. Our
findings now show that it can also be adopted to verify the
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impossibility of obtaining the quantum results by means of a
classical wavelike model of light. We also note that increas-
ing the system dimensionality reduces the allowed non-
classical range ofG accessible by symmetric input states, as
can be easily observed by comparing Eq. (20) with Eq. (15).
While the classical bound is completely general, the

requirement of injecting states in every input port of a
quantum interferometer assumes a lossless evolution.
However, the same values for GðQÞ would be obtained in
the presence of balanced losses, defined as independent of
the path taken by the light in the interferometer. Indeed, their
only effect would be the multiplication of the output
intensities by a constant efficiency factor, which does not
affect the studied correlation function because it simplifies in
Eq. (2). Balanced losses can be expected to arise with good
approximation if the interferometer is symmetrically built
(e.g., see the universal model recently proposed in Ref. [51]).
Interferometer divisibility.—We show how Eq. (20)

allows us to develop a sufficient criterion that can certify
the impossibility of dividing an interferometer into inde-
pendent subblocks, therefore certifying “true” m-modes
interference. Let us consider an interferometer with outputs
completely monitored, whose evolution matrix U can be
split into two independent submatrices. If m states of light
characterized by η ≥ 0 are injected into its input ports, the
minimum value achievable by GðQÞ is obtained when the
two subblocks are FTM matrices. Equation (20), and
the observation that hÎiÎji ¼ hÎiihÎji if outputs i, j are
taken in different blocks, allow us to write the aforemen-
tioned minimum as

minGðQ;sym;divÞ
N¼m;M¼m ¼ 1 − ð1þ ηÞ m − 2

mðm − 1Þ : ð21Þ

As minGðQ;sym;divÞ
N¼m;M¼m is strictly larger than the global mini-

mum of Eq. (20) with M ¼ m ≥ 2, a value of G smaller
than this threshold will provide the desired certification.
Conclusions.—In this Letter we showed how a normal-

ized quantifier of correlations among pairs of output
intensities can yield information on the nonclassicality of
the input sources and on the structure of the used multiport
interferometer. In particular, we found a tight lower bound
for the correlations obtained with a classical setup, where
electric fields fully describe the light of the sources. We
also discussed the necessity of using sub-Poissonian
quantum sources in order to violate this threshold, and
characterized the maximal extent of this violation under
symmetric input conditions. Our classical bounds confirm
the importance of low-order correlation functions in the
study of many-particle interference effects. By comparing
quantum predictions with classical electromagnetic theory,
our results give a new perspective on this fundamental issue
and can be of interest for experimentalists as possible tools
for characterizing their setups.

We would like to thank W. S. Kolthammer, A. D. K.
Plato, and A. Buchleitner for valuable discussions. We
acknowledge financial support from the UK EPSRC (EP/
K034480/1), the ERC grant MOQUACINO and the People
Programme (Marie Curie Actions) of the EU’s Seventh
Framework Programme (FP7/2007-2013).

APPENDIX PROOF FOR THE
CLASSICAL BOUND

Here we provide a proof for Eq. (15). First, we prove that
the right-hand side is a lower bound, and then that it can be
saturated. To do so, it is convenient to formally write the
vectors ψ i in Dirac notation: ψ iðαÞ ¼ hαjψ ii. Let then
H ¼ P

M
i jψ iihψ ij, and note that the two following inequal-

ities hold:

XN
α¼1

hαjHjαi2 ≤ Tr½H2�; Tr½H2� ≥ Tr½H�2
minfM;Ng : ðA1Þ

The first can be obtained by using the decomposition of
the identity operator 1 ¼ P

N
α jαihαj and the properties

of the trace. The second follows from the inequality
Tr½σ2� ≥ 1=rankðσÞ, which applies to any density matrix
σ because the quantum state with minimal purity is the
completely mixed one, by substituting σ ¼ H=Tr½H� and
by noticing that rankðHÞ ≤ minfM;Ng. Let us now rewrite
Eq. (14) as

GðclÞ ¼ 1þ 1

MðM − 1Þ
�
Tr½H2� −

XN
α

hαjHjαi2

−M þM
XN
α¼1

XM
i¼1

1

M
ðhαj½jψ iihψ ij�jαiÞ2

�
: ðA2Þ

The convexity of the square function allows us to
lower bound the last term between brackets withP

N
α¼1hαjHjαi2=M. At this stage, the application of the

two inequalities given in Eq. (A1) (in the order in which
they appear) leads to the desired lower bound. Its tightness
can be easily proven by considering

hαjψ ii ¼
(

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfM;Ng

p ωði−1Þðα−1Þ
M if α ≤ M

0 if α > M:
ðA3Þ
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