260 research outputs found

    Concentration-dependent mobility in organic field-effect transistors probed by infrared spectromicroscopy of the charge density profile

    Full text link
    We show that infrared imaging of the charge density profile in organic field-effect transistors (FETs) can probe transport characteristics which are difficult to access by conventional contact-based measurements. Specifically, we carry out experiments and modeling of infrared spectromicroscopy of poly(3-hexylthiophene) (P3HT) FETs in which charge injection is affected by a relatively low resistance of the gate insulators. We conclude that the mobility of P3HT has a power-law density dependence, which is consistent with the activated transport in disorder-induced tails of the density of states.Comment: 3+ pages, 2 figure

    Control of Mitochondrial Remodeling by the ATPase Inhibitory Factor 1 Unveils a Pro-survival Relay via OPA1

    Get PDF
    The ubiquitously expressed ATPase inhibitory factor 1 (IF1) is a mitochondrial protein that blocks the reversal of the F1Fo-ATPsynthase, preventing dissipation of cellular ATP and ischemic damage. IF1 suppresses programmed cell death, enhancing tumor invasion and chemoresistance, and is expressed in various types of human cancers. In this study, we examined its effect on mitochondrial redox balance and apoptotic cristae remodeling, finding that, by maintaining ATP levels, IF1 reduces glutathione (GSH) consumption and inactivation of peroxiredoxin 3 (Prx3) during apoptosis. This correlates with inhibition of metallopeptidase OMA1-mediated processing of the pro-fusion dynamin-related protein optic atrophy 1 (OPA1). Stabilization of OPA1 impedes cristae remodeling and completion of apoptosis. Taken together, these data suggest that IF1 acts on both mitochondrial bioenergetics and structure, is involved in mitochondrial signaling in tumor cells, and may underlie their proliferative capacity

    Reversible and Irreversible Interactions of Poly(3-hexylthiophene) with Oxygen Studied by Spin-Sensitive Methods

    Full text link
    Understanding of degradation mechanisms in polymer:fullerene bulk-heterojunctions on the microscopic level aimed at improving their intrinsic stability is crucial for the breakthrough of organic photovoltaics. These materials are vulnerable to exposure to light and/or oxygen, hence they involve electronic excitations. To unambiguously probe the excited states of various multiplicities and their reactions with oxygen, we applied combined magneto-optical methods based on multifrequency (9 and 275 GHz) electron paramagnetic resonance (EPR), photoluminescence (PL), and PL-detected magnetic resonance (PLDMR) to the conjugated polymer poly(3-hexylthiophene) (P3HT) and polymer:fullerene bulk heterojunctions (P3HT:PCBM; PCBM = [6,6]-phenyl-C61-butyric acid methyl ester). We identified two distinct photochemical reaction routes, one being fully reversible and related to the formation of polymer:oxygen charge transfer complexes, the other one, irreversible, being related to the formation of singlet oxygen under participation of bound triplet excitons on the polymer chain. With respect to the blends, we discuss the protective effect of the methanofullerenes on the conjugated polymer bypassing the triplet exciton generation

    Infrared signatures of high carrier densities induced in semiconducting poly(3-hexylthiophene) by fluorinated organosilane molecules

    Full text link
    We report on infrared (IR) absorption and dc electrical measurements of thin films of poly(3-hexylthiophene) (P3HT) that have been modified by a fluoroalkyl trichlorosilane (FTS). Spectra for FTS-treated films were compared to data for electrostatically-doped P3HT in an organic field-effect transistor (OFET). The appearance of a prominent polaron band in mid-IR absorption data for FTS-treated P3HT supports the assertion of hole doping via a charge-transfer process between FTS molecules and P3HT. In highly-doped films with a significantly enhanced polaron band, we find a monotonic Drude-like absorption in the far-IR, signifying delocalized states. Utilizing a simple capacitor model of an OFET, we extracted a carrier density for FTS-treated P3HT from the spectroscopic data. With carrier densities reaching 1014^{14} holes/cm2^2, our results demonstrate that FTS doping provides a unique way to study the metal-insulator transition in polythiophenes

    Impact of the Time to Surgery on Visual Outcomes for Rhegmatogenous Retinal Detachment Repair: A Meta-Analysis

    Get PDF
    PURPOSE: To determine the relationship between time from symptom onset or presentation to repair and visual outcomes for macula-on and macula-off rhegmatogenous retinal detachment (RRD). DESIGN: Meta-analysis. METHODS: We searched MEDLINE, EMBASE, and Cochrane Library for randomized controlled trials and observational studies comparing best-corrected visual acuity (BCVA) based on time to RRD repair. Study identifiers, baseline characteristics, intervention characteristics, and visual outcomes were extracted. We conducted a random effects meta-analysis. Sensitivity analyses included leave-1-out and influence analyses. Primary outcomes included mean difference (MD) in final BCVA, MD between preoperative and final BCVA (∆BCVA), and relative risk of final BCVA24 hours. Secondary outcomes assessed other time points. RESULTS: Twenty observational studies reported on 1929 patients. Macula-off RRD repair in 0-3 days from symptom onset was superior to 4-7 days for final BCVA (MD -0.06 [95% CI -0.09, -0.03], P \u3c .001) but was not different for ∆BCVA (P \u3e .05). Macula-on repair in 0-24 hours from presentation was superior to \u3e24 hours for final BCVA (MD -0.02 [95% CI -0.03, -0.01], P \u3c .05) but was not different for ∆BCVA (P \u3e .05). CONCLUSIONS: Macula-off RRD repair in 0-3 days from symptom onset may have better final BCVA compared to repair in 4-7 days. Macula-on RRD repair in 0-24 hours of presentation may have better final BCVA compared to repair in \u3e24 hours. These results were supported by moderate- and low-quality evidence, respectively, and may have been influenced by differences in baseline BCVA

    Mitochondria form cholesterol-rich contact sites with the nucleus during retrograde response

    Get PDF
    Cholesterol metabolism is pivotal to cellular homeostasis, hormones production, and membranes composition. Its dysregulation associates with malignant reprogramming and therapy resistance. Cholesterol is trafficked into the mitochondria for steroidogenesis by the transduceome protein complex, which assembles on the outer mitochondrial membrane (OMM). The highly conserved, cholesterol-binding, stress-reactive, 18kDa translocator protein (TSPO), is a key component of this complex. Here, we modulate TSPO to study the process of mitochondrial retrograde signalling with the nucleus, by dissecting the role played by cholesterol and its oxidized forms. Using confocal and ultrastructural imaging, we describe that TSPO enriched mitochondria, remodel around the nucleus, gathering in cholesterol-enriched domains (or contact sites). This communication is controlled by HMG-CoA reductase inhibitors (statins), molecular and pharmacological regulation of TSPO. The described Nucleus-Associated Mitochondria (NAM) seem to be implementing survival signalling in aggressive forms of breast cancer. This work therefore provides the first evidence for a functional and bio-mechanical tethering between mitochondria and nucleus, as being the basis of pro-survival mechanisms, thus establishing a new paradigm in cross-organelle communication via cholesterol re-distribution

    Operating organic light-emitting diodes imaged by super-resolution spectroscopy

    Get PDF
    Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semi-conducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50 nm spatial resolution. We find that brightest emission comes from regions with more densely packed chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. This points the way towards real-time analysis of materials design principles in devices as they actually operateope
    • 

    corecore