4,570 research outputs found

    Collecting \u3ci\u3eNeocurtilla Hexadactyla\u3c/i\u3e, the Northern Mole Cricket (Orthoptera: Gryllidae), in Iowa

    Get PDF
    (excerpt) The northern mole cricket, Neocurtilla hexadactyla (Perty), is a common insect that is infrequently collected perhaps owing to its burrowing and nocturnal habits. It tunnels into moist soil and feeds on tender roots, earthworms, or various insect larvae (Blatchley, 1920)

    Feeding Preference Studies of Adult \u3ci\u3eNezara Viridula\u3c/i\u3e (Hemiptera: Pentatomidae) Morphs from India and the United States

    Get PDF
    Nezara viridula (Linnaeus) morphs from India and the United States were studied in a laboratory comparison of feeding preferences for pods of soybeans, Glycine max, and green beans, Phaseolus vulgaris. Adults of a morph from the U.S. apparently selected pods at random, while three sympatric morphs from India generally preferred green bean pods

    Numerical simulation of one-dimensional heat transfer in composite bodies with phase change

    Get PDF
    A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions

    Marangoni bubble motion in zero gravity

    Get PDF
    It was shown experimentally that the Marangoni phenomenon is a primary mechanism for the movement of a gas bubble in a nonisothermal liquid in a low gravity environment. A mathematical model consisting of the Navier-Stokes and thermal energy equations, together with the appropriate boundary conditions for both media, is presented. Parameter perturbation theory is used to solve this boundary value problem; the expansion parameter is the Marangoni number. The zeroth, first, and second order approximations for the velocity, temperature and pressure distributions in the liquid and in the bubble, and the deformation and terminal velocity of the bubble are determined. Experimental zero gravity data for a nitrogen bubble in ethylene glycol, ethanol, and silicone oil subjected to a linear temperature gradient were obtained using the NASA Lewis zero gravity drop tower. Comparison of the zeroth order analytical results for the bubble terminal velocity showed good agreement with the experimental measurements. The first and second order solutions for the bubble deformation and bubble terminal velocity are valid for liquids having Prandtl numbers on the order of one, but there is a lack of appropriate data to test the theory fully

    Strongly magnetized classical plasma models

    Get PDF
    Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model)

    From Peierls brackets to a generalized Moyal bracket for type-I gauge theories

    Get PDF
    In the space-of-histories approach to gauge fields and their quantization, the Maxwell, Yang--Mills and gravitational field are well known to share the property of being type-I theories, i.e. Lie brackets of the vector fields which leave the action functional invariant are linear combinations of such vector fields, with coefficients of linear combination given by structure constants. The corresponding gauge-field operator in the functional integral for the in-out amplitude is an invertible second-order differential operator. For such an operator, we consider advanced and retarded Green functions giving rise to a Peierls bracket among group-invariant functionals. Our Peierls bracket is a Poisson bracket on the space of all group-invariant functionals in two cases only: either the gauge-fixing is arbitrary but the gauge fields lie on the dynamical sub-space; or the gauge-fixing is a linear functional of gauge fields, which are generic points of the space of histories. In both cases, the resulting Peierls bracket is proved to be gauge-invariant by exploiting the manifestly covariant formalism. Moreover, on quantization, a gauge-invariant Moyal bracket is defined that reduces to i hbar times the Peierls bracket to lowest order in hbar.Comment: 14 pages, Late

    Analysis and evaluation of an integrated laminar flow control propulsion system

    Get PDF
    Reduction of drag has been a major goal of the aircraft industry as no other single quantity influences the operating costs of transport aircraft more than aerodynamic drag. It has been estimated that even modest reduction of frictional drag could reduce fuel costs by anywhere from 2 to 5 percent. Current research on boundary layer drag reduction deals with various approaches to reduce turbulent skin friction drag as a means of improving aircraft performance. One of the techniques belonging to this category is laminar flow control in which extensive regions of laminar flow are maintained over aircraft surfaces by delaying transition to turbulence through the ingestion of boundary layer air. While problems of laminar flow control have been studied in some detail, the prospect of improving the propulsion system of an aircraft by the use of ingested boundary layer air has received very little attention. An initial study for the purpose of reducing propulsion system requirements by utilizing the kinetic energy of boundary layer air was performed in the mid-1970's at LeRC. This study which was based on ingesting the boundary layer air at a single location, did not yield any significant overall propulsion benefits; therefore, the concept was not pursued further. However, since then it has been proposed that if the boundary layer air were ingested at various locations on the aircraft surface instead of just at one site, an improvement in the propulsion system might be realized. The present report provides a review of laminar flow control by suction and focuses on the problems of reducing skin friction drag by maintaining extensive regions of laminar flow over the aircraft surfaces. In addition, it includes an evaluation of an aircraft propulsion system that is augmented by ingested boundary layer air

    Evaluation of the InDUCKtion project at UCL

    Get PDF
    Executive summary: There is evidence that a good induction to university life can help with student retention; however, there is also a danger of overwhelming students during the intense period of fresher’s week. Under the auspices of a small grant from the Higher Education Academy’s ‘Changing the Learning Landscape’ funding stream, staff at two universities (University College London and Southampton Solent University) collaborated to produce an innovative and engaging induction project entitled ‘InDUCKtion’, based on the idea of an induction duck being a fun character for students to interact with. At UCL, the InDUCKtion duck existed in the form of a physical plastic duck included in international postgraduate student induction packs, and they were encouraged to take photos of themselves in and around UCL and London as part of a photo challenge using social media. It was anticipated that this would enable students to familiarise themselves with the locale, make friends and have fun at the same time. The InDUCKtion duck was also evident on flyers and posters with QR codes advertising an online tour to enable students to gain an accelerated familiarisation with the campus and its facilities. Within UCL, the project was a collaborative, cross-departmental venture instigated by members of UCL’s E-Learning Environments (ELE) working in partnership with the Centre for the Advancement of Learning and Teaching (CALT) and Student Support and Wellbeing (SSW). The logistics of the project meant that the team members also had to liaise with a number of other individuals and departments around UCL, to help promote and implement the project. Despite a rapid following on Twitter in a relatively short period, a reasonable hit rate on the QR code for the main page of the online tour resource, and some engagement with the photo challenges using social media, participation in the project was lower than anticipated. Lessons learned from an evaluation perspective revealed that adding another activity to an already overwhelming fresher’s week was problematic, despite its innovative and interactive nature. The use of QR codes was problematic for a number of reasons, and the project needed more buy-in from student representatives and academics to provide institutional endorsement. Recommendations for future instances of the project include securing student representation and academic endorsement, integrating the activity with parallel induction activities – particularly with academic departments, replacing QR codes with an alternative technology-enhanced learning approach and optimising the learning design to better motivate students and promote groupwork

    Design, fabrication, and structural testing of a lightweight shadow shield for deep-space application

    Get PDF
    Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application

    Semiclassical scalar propagators in curved backgrounds: formalism and ambiguities

    Full text link
    The phenomenology of quantum systems in curved space-times is among the most fascinating fields of physics, allowing --often at the gedankenexperiment level-- constraints on tentative theories of quantum gravity. Determining the dynamics of fields in curved backgrounds remains however a complicated task because of the highly intricate partial differential equations involved, especially when the space metric exhibits no symmetry. In this article, we provide --in a pedagogical way-- a general formalism to determine this dynamics at the semiclassical order. To this purpose, a generic expression for the semiclassical propagator is computed and the equation of motion for the probability four-current is derived. Those results underline a direct analogy between the computation of the propagator in general relativistic quantum mechanics and the computation of the propagator for stationary systems in non-relativistic quantum mechanics. A possible application of this formalism to curvature-induced quantum interferences is also discussed.Comment: New materials on gravitationally-induced quantum interferences has been adde
    • …
    corecore