595 research outputs found

    Modeling turbulent energy behavior and sudden viscous dissipation in compressing plasma turbulence

    Full text link
    We present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, such as may exist in various inertial confinement fusion experiments or astrophysical settings. The plasma viscosity depends on both the temperature and the ionization state, for which many possible scalings with compression are possible. For example, in an adiabatic compression the temperature scales as 1/L21/L^2, with LL the linear compression ratio, but if thermal energy loss mechanisms are accounted for, the temperature scaling may be weaker. As such, the viscosity has a wide range of net dependencies on the compression. The model presented here, with no parameter changes, agrees well with numerical simulations for a range of these dependencies. This model permits the prediction of the partition of injected energy between thermal and turbulent energy in a compressing plasma.Comment: 9 pages, 2 figures, 1 tabl

    Compressing turbulence and sudden viscous dissipation with compression-dependent ionization state

    Full text link
    Turbulent plasma flow, amplified by rapid 3D compression, can be suddenly dissipated under continuing compression. This effect relies on the sensitivity of the plasma viscosity to the temperature, μT5/2\mu \sim T^{5/2}. The plasma viscosity is also sensitive to the plasma ionization state. We show that the sudden dissipation phenomenon may be prevented when the plasma ionization state increases during compression, and demonstrate the regime of net viscosity dependence on compression where sudden dissipation is guaranteed. Additionally, it is shown that, compared to cases with no ionization, ionization during compression is associated with larger increases in turbulent energy, and can make the difference between growing and decreasing turbulent energy.Comment: 10 pages, 3 figure

    Sudden viscous dissipation of compressing turbulence

    Full text link
    Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion

    Why Are Alkali Halide Solid Surfaces Not Wetted By Their Own Melt?

    Full text link
    Alkali halide (100) crystal surfaces are anomalous, being very poorly wetted by their own melt at the triple point. We present extensive simulations for NaCl, followed by calculations of the solid-vapor, solid-liquid, and liquid-vapor free energies showing that solid NaCl(100) is a nonmelting surface, and that its full behavior can quantitatively be accounted for within a simple Born-Meyer-Huggins-Fumi-Tosi model potential. The incomplete wetting is traced to the conspiracy of three factors: surface anharmonicities stabilizing the solid surface; a large density jump causing bad liquid-solid adhesion; incipient NaCl molecular correlations destabilizing the liquid surface. The latter is pursued in detail, and it is shown that surface short-range charge order acts to raise the surface tension because incipient NaCl molecular formation anomalously reduces the surface entropy of liquid NaCl much below that of solid NaCl(100).Comment: 4 pages, 3 figure

    Density changes of aerosol particles as a result of chemical reaction

    Get PDF
    International audienceThis paper introduces the capability to study simultaneously changes in the density, the chemical composition, the mobility diameter, the aerodynamic diameter, and the layer thickness of multi-layered aerosol particles as they are being altered by heterogeneous chemical reactions. A vaporization-condensation method is used to generate aerosol particles composed of oleic acid outer layers of 2 to 30 nm on 101-nm polystyrene latex cores. The layer density is modified by reaction of oleic acid with ozone for variable exposure times. For increasing ozone exposure, the mobility diameter decreases while the vacuum aerodynamic diameter increases, which, for spherical particles, implies that particle density increases. The aerosol particles are confirmed as spherical based upon the small divergence of the particle beam in the aerosol mass spectrometer. The particle and layer densities are calculated by two independent methods, namely one based on the measured aerodynamic and mobility diameters and the other based on the measured mobility diameter and particle mass. The uncertainty estimates for density calculated by the second method are two to three times greater than those of the first method. Both methods indicate that the layer density increases from 0.89 to 1.12 g·cm?3 with increasing ozone exposure. Aerosol mass spectrometry shows that, concomitant with the increase in the layer density, the oxygen content of the reacted layer increases. Even after all of the oleic acid has reacted, the layer density and the oxygen content continue to increase slowly with prolonged ozone exposure, a finding which indicates continued chemical reactions of the organic products either with ozone or with themselves. The results of this paper provide new insights into the complex changes occurring for atmospheric particles during the aging processes caused by gas-phase oxidants

    Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique

    Get PDF
    The reaction kinetics of submicron oleic (9-octadecanoic (Z)-) acid aerosols with ozone was studied using a novel aerosol mass spectrometric technique. In the apparatus a flow of size-selected aerosols is introduced into a flow reactor where the particles are exposed to a known density of ozone for a controlled period of time. The aerosol flow is then directed into an aerosol mass spectrometer for particle size and composition analyses. Data from these studies were used to: (a) quantitatively model the size-dependent kinetics process, (b) determine the aerosol size change due to uptake of ozone, (c) assess reaction stoichiometry, and (d) obtain qualitative information about the volatility of the reaction products. The reactive uptake probability for ozone on oleic acid particles obtained from modeling is 1.6 (±0.2) × 10^(−3) with an upper limit for the reacto-diffusive length of ∼10 nm. Atmospheric implications of the results are discussed

    Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    Get PDF
    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10[superscript 8] to 2.2 × 10[superscript 10] molec cm[superscript −3] over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10[superscript 6] to 2 × 10[superscript 7] molec cm[superscript −3] over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10[superscript 11] and 2 × 10[superscript 11] molec cm[superscript −3] s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.National Science Foundation (U.S.). Atmospheric Chemistry Program (Grant AGS-1056225)National Science Foundation (U.S.). Atmospheric Chemistry Program (Grant AGS-1245011

    The influence of rice husk ash addition on the properties of metakaolin-based geopolymers

    Get PDF
    This paper investigates the replacement of metakaolin (MK) with rice husk ash (RHA) in the production of alkali-activated binders or geopolymers. The influence of the RHA addition on compressive and flexural strength, as well as water absorption and apparent porosity were determined, in terms of the percentage of RHA in the mixture and molar ratios of the mixes. Fourier Transform Infrared (FTIR) spectroscopy and Energy Dispersive spectroscopy (EDS) were carried out to assess the changes in the microstructure of the geopolymer matrices with the RHA addition. Results have shown that RHA may be a supplementary precursor for geopolymers. The composition of the geopolymer matrices containing 0-40% RHA is very similar, which indicates that the additional Si provided by RHA is not incorporated to the geopolymer matrix. In addition, geopolymers with RHA content higher than 40% present a plastic behavior, characterized by extremely low strength and high deformation, which can be attributed to the formation of silica gel in formulations containing variable Si/Al ratio
    corecore