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Abstract. This paper introduces the capability to study
simultaneously changes in the density, the chemical com-
position, the mobility diameter, the aerodynamic diameter,
and the layer thickness of multi-layered aerosol particles
as they are being altered by heterogeneous chemical reac-
tions. A vaporization-condensation method is used to gen-
erate aerosol particles composed of oleic acid outer layers
of 2 to 30 nm on 101-nm polystyrene latex cores. The layer
density is modified by reaction of oleic acid with ozone for
variable exposure times. For increasing ozone exposure, the
mobility diameter decreases while the vacuum aerodynamic
diameter increases, which, for spherical particles, implies
that particle density increases. The aerosol particles are con-
firmed as spherical based upon the small divergence of the
particle beam in the aerosol mass spectrometer. The par-
ticle and layer densities are calculated by two independent
methods, namely one based on the measured aerodynamic
and mobility diameters and the other based on the measured
mobility diameter and particle mass. The uncertainty esti-
mates for density calculated by the second method are two
to three times greater than those of the first method. Both
methods indicate that the layer density increases from 0.89 to
1.12 g·cm−3 with increasing ozone exposure. Aerosol mass
spectrometry shows that, concomitant with the increase in
the layer density, the oxygen content of the reacted layer
increases. Even after all of the oleic acid has reacted, the
layer density and the oxygen content continue to increase
slowly with prolonged ozone exposure, a finding which in-
dicates continued chemical reactions of the organic products
either with ozone or with themselves. The results of this pa-
per provide new insights into the complex changes occurring
for atmospheric particles during the aging processes caused
by gas-phase oxidants.

Correspondence to:S. T. Martin
(scotmartin@harvard.edu)

1 Introduction

The density (ρp) of an aerosol particle is a physical prop-
erty of great importance for the prediction of particle me-
chanics and thus aerosol life cycles, both in the atmosphere
and in the human respiratory system (Seinfeld and Pandis,
1998). The density, combined with the dynamic shape fac-
tor (χ), relates the aerodynamic diameter (da) of a particle
to its electric mobility diameter (dm) (Hinds, 1999; Baron
and Willeke, 2001). The dynamic shape factor accounts for
the effect of nonsphericity on the particle drag force. Fur-
thermore, the density indirectly affects the optical properties
of particles because the refractive index typically increases
monotonically with the density.

Early determinations of density from measurements of the
mass (mp) and the mobility diameter of spherical particles
were made using a Millikan cell (Fuchs, 1964). More re-
cently, Lipowicz (1988) employed a Millikan cell to deter-
mine the effective density (ρe) of cigarette smoke particles.
The effective density is an alternative when an experiment is
not capable of separatingρp andχ . In this case,ρe=f (ρp,
χ), which can be calculated from the measurement of any
two of da , dm, or mp (Kelly and McMurry, 1992). Risti-
maki et al. (2002) obtained the effective density from mea-
surements ofdm with a scanning mobility particle sizer and
of da with an electrical low pressure impactor. McMurry et
al. (2002) determined the density of spherical liquid particles
by first selecting particles of specificdm using an electrostatic
classifier and subsequently measuringmp via an aerosol par-
ticle mass analyzer (Ehara et al., 1996). Hand and Kreiden-
weis (2002) calculated the effective density using a differ-
ential mobility analyzer to measuredm and an aerodynamic
particle sizer to measureda .
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Figure 1  

 

 

 

Tube 
Furnace Ozone

Coating AnalysisProcessing

DMA
dm

CPC

MS
dva

TOF
mLA

M
S

SM
PS

N

Fig. 1. Experimental apparatus for generating, processing, and an-
alyzing coated particles. Key: TOF, time-of-flight; MS, mass spec-
trometer; DMA, differential mobility analyzer; CPC, condensation
particle counter; AMS, aerosol mass spectrometer; SMPS, scanning
mobility particle sizer. Symbolsdm, dva , mL, andN are defined in
the text.

In comparison to these earlier reports for determining par-
ticle density, the experimental setup introduced in this paper
has several significant innovations:

1. All three quantitiesda , dm, andmp are simultaneously
measured. Two independent methods of determining
particle density are, therefore, possible.

2. A polystyrene latex (PSL) core serves to maintain a
spherical shape for particles coated with oleic acid.
Density, instead of effective density, is therefore mea-
sured. A spherical shape is confirmed by measuring the
divergence of the particle beam in the AMS.

3. Particle density is systematically varied by controlled
heterogeneous chemistry. Namely, ozone reacts with
thin outer layers of oleic acid on the PSL core particles
(Katrib et al., 2004).

The reaction of oleic acid with ozone has recently been inves-
tigated intensively (Morris et al., 2002; Moise and Rudich,
2002; Smith et al., 2002, 2003; Ziemann 2003; Thornberry
and Abbatt, 2004; Katrib et al., 2004; Hearn and Smith,
2004; Asad et al., 2004; Broekhuizen et al., 20051). The ex-
perimental approach described in the current paper allows for
detailed observations of the physical and chemical changes
that are caused by aerosol heterogeneous chemistry.

2 Experimental

A scanning mobility particle sizer (SMPS) and an aerosol
mass spectrometer (AMS) are employed for parallel on-line

1Broekhuizen, K. E., Thornberry, T., Kumar, P. P., and Abbatt,
J. P. D.: Formation of cloud condensation nuclei by oxidative pro-
cessing: unsaturated fatty acids, in press, 2005.

measurements of the mobility diameter, the vacuum aero-
dynamic diameter, the mass, and the chemical make-up of
laboratory-generated aerosol particles. A detailed descrip-
tion of the experimental setup and protocol is provided in Ka-
trib et al. (2004). Briefly, an aerosol composed of polystyrene
latex (PSL) particles is externally mixed with an aerosol
composed of oleic acid particles. The combined aerosol
passes through a tube furnace having a linear hot-to-cool
temperature gradient (78 to 25◦C). The oleic acid particles
vaporize in the hot region, and the vapor subsequently con-
denses in the cool regions onto the surfaces of the PSL parti-
cles (Fig. 1). The apparatus generates 101-nm PSL particles
coated with oleic acid layers varying from 2 to 30 nm thick-
ness in a reproducible and controlled manner. At the exit of
the tube furnace, the coated aerosol particles are exposed to
ozone of variable concentration (1 to 30 ppmV; 2.5×1013 to
7.4×1014 molec cm−3) in 1 atm of 98% N2 and 2% O2 for
3 s at a relative humidity under 1% at 298 K. The reaction of
oleic acid with O3 is employed to increase the density of the
coating and to reduce the geometric diameter of the particles.

Particle shape is interrogated through measurement of the
divergence of the particle beam (Sect. 2.1). Particle mo-
bility diameter (dm), vacuum aerodynamic diameter (dva),
aerosol layer mass (mL), and particle number concentration
(N) are measured in parallel by an SMPS/AMS setup (Fig. 1)
(Sects. 2.2–2.5). These primary measurements are employed
to calculate particle layer mass (m̄L), layer thickness (L),
particle density (ρp), and layer density (ρL) (Sects. 2.6–2.8).
The relationships among these quantities are summarized in
Tables 1 and 2. The uncertainties of the measured and calcu-
lated quantities are summarized in Table 3.

2.1 Interrogation of particle shape

The divergence of a particle beam (�) in an aerodynamic
lens similar to the one installed at the inlet of the AMS is
discussed by Liu et al. (1995a, b). The divergence, which is
determined in the nozzle expansion by the greater of Brow-
nian motion or the aerodynamic lift force, depends on par-
ticle shape. A spherical particle, which provides the refer-
ence value for the drag force, has zero lift force, and, conse-
quently, the beam divergence (caused by Brownian motion)
is small.

The beam divergence inside the AMS is determined via
analysis of the lateral beam profile, which is obtained by
stepping a wire of 0.3 mm diameter across the particle beam.
The solid angle of a cone having a base of radiusr and a
heighth is given by�=2π(1− cosθ) whereθ= tan−1(r/h).
In the AMS, the distance from the expansion nozzle to the
flash vaporizer is 0.45 m.

Whereas the beam divergence is a response to the lift
force, we are instead in need of the drag force for many of
the calculations (cf. Tables 1 and 2). Specifically, we need
the dynamic shape factor (χ), which is the ratio of the actual
resistance drag of the particle to that of a sphere having the
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Table 1. (Top) Relationships of the measured quantities to the theoretical volume equivalent diameter (de). An irregular particle melted
and reformed as a sphere has a volume of (π /6)(de)

3. (Btm) Relationships of the derived quantities (L, ρp, andρL) to the measured
quantities (dm, dva , andm̄L). Terms not defined elsewhere includeFD (the drag force),η (the absolute viscosity of air), andv (the particle
velocity). (For further derivation of the relationships shown in this table, see chapter 3 of Hinds (1999) and chapters 3 and 4 of Baron and
Willeke (2001)).
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Relationships of the derived quantities (L, ρp, and ρL) to the measured quantities (dm, dva, and Lm ) 
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Table 2. Relationships amongdm, dva , andm̄L.
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Table 2. 

Table 3. Summary of the results of six experiments. Given are (1) the primary measurements of dynamic shape factor (χ), mobility diameter
(dm), vacuum aerodynamic diameter (dva), aerosol layer mass (mL), and particle number concentration measured by the SMPS (N) and
(2) the derived quantities of layer thickness (L), particle layer mass (̄mL), particle density (ρp), and layer density (ρL). The uncertainties
(one sigma) shown for the derived quantities are based upon the uncertainties of the primary measurements (see Sect. 3.3). (Top) Results are
shown for unreacted particles. (Btm) Results are shown for the same particles having 1.0 normalized ozone exposure, which is defined as
an ozone exposure (PO3t) such thatmOL/(mOL)0=0.05 wheremOL is the mass of oleic acid in the coating, PO3 is the partial pressure of
ozone, andt is the reaction time.∗Note added in proof: The covariance ofmL andN (see Sect. A7) suggest that this number refers to 2%
precision instead of 2% accuracy. Figure 6b shows this precision. The high precision is obtained because of the similarity between the test
system (oleic acid and its ozonolysis products) and the calibration system (oleic acid). The absolute accuracy ofmL cannot be better than
the combined accuracies ofN (5%) anddm (1%) because of the calibration procedure (Eq. A2.1). In the experiments reported in this paper,
which are focused on density, the accuracy of the calibration cancels out, as shown by the sensitivity study in Table 6.

  1

 
Pure oleic acid coatings            

  Measurements   Derived Quantities 

dm dva mL N L  Lm  
Lm  ρp ρp ρL ρL 

Experiment χ (nm) (nm) (µg·m-3) (# cm-3)

 

(nm) (10-15 g) (10-15 g) (g·cm-3) (g·cm-3) (g·cm-3) (g·cm-3) 
#1 1.00 101 107 0.0 9000  0 - - 1.059 ± 0.015 1.055 ± 0.032 - - 
#2 1.00 117 118 2.5 9100  8.0 ± 0.6 0.28 ± 0.01 0.28 ± 0.02 1.009 ± 0.014 1.007 ± 0.035 0.928 ± 0.036 0.926 ± 0.094
#3 1.00 123 122 3.7 9350  11.0 ± 0.6 0.40 ± 0.02 0.40 ± 0.02 0.992 ± 0.014 0.992 ± 0.037 0.916 ± 0.028 0.918 ± 0.080
#4 1.00 137 133 6.9 9400  18.0 ± 0.7 0.74 ± 0.04 0.74 ± 0.03 0.971 ± 0.014 0.970 ± 0.041 0.916 ± 0.021 0.915 ± 0.067
#5 1.00 151 144 10.8 9500  25.0 ± 0.8 1.14 ± 0.06 1.15 ± 0.04 0.954 ± 0.013 0.949 ± 0.045 0.911 ± 0.018 0.904 ± 0.063
#6 1.00 161 152 14.1 9500   30.0 ± 0.8 1.49 ± 0.08 1.49 ± 0.05 0.944 ± 0.013 0.942 ± 0.047 0.908 ± 0.017 0.906 ± 0.061

Accuracy 0% 1% 1% 2%* 5%         
Comment AMS DMA AMS AMS SMPS   eq T1.5 eq 1a eq 1b eq 2a eq 2b eq 3a eq 3b 

              
After 1.0 normalized ozone exposure            

  Measurements   Derived Quantities 

dm dva mL N L  Lm  
Lm  ρp ρp ρL ρL 

Experiment χ (nm) (nm) (µg·m-3) (# cm-3)

 

(nm) (10-15 g) (10-15 g) (g·cm-3) (g·cm-3) (g·cm-3) (g·cm-3) 
#1 1.00 101 107 0.0 9000  0 - - 1.059 ± 0.015 1.055 ± 0.031 - - 
#2 1.00 115 119 1.9 7500  7.0 ± 0.6 0.25 ± 0.01 0.25 ± 0.02 1.053 ± 0.015 1.053 ± 0.036 1.052 ± 0.050 1.056 ± 0.121
#3 1.00 118 124 2.7 8100  9.0 ± 0.6 0.34 ± 0.02 0.34 ± 0.02 1.059 ± 0.015 1.055 ± 0.038 1.069 ± 0.041 1.060 ± 0.103
#4 1.00 131 135 5.2 8200  15.0 ± 0.7 0.67 ± 0.04 0.67 ± 0.03 1.053 ± 0.015 1.051 ± 0.044 1.053 ± 0.028 1.050 ± 0.081
#5 1.00 142 150 8.1 8000  21.0 ± 0.7 1.04 ± 0.06 1.05 ± 0.04 1.077 ± 0.015 1.074 ± 0.050 1.091 ± 0.024 1.086 ± 0.079
#6 1.00 148 158 9.8 7900   24.0 ± 0.8 1.26 ± 0.07 1.27 ± 0.04 1.081 ± 0.015 1.078 ± 0.052 1.094 ± 0.023 1.089 ± 0.077

Accuracy 0% 1% 1% 2%* 5%         
Comment AMS DMA AMS AMS SMPS   eq T1.5 eq 1a eq 1b eq 2a eq 2b eq 3a eq 3b 

*Note added in the proof: The covariance of mL and N (see section A7) suggest that this number refers to 2% precision instead of 2% accuracy. Figure 6b shows this precision. The 
high precision is obtained because of the similarity between the test system (oleic acid and its ozonolysis products) and the calibration system (oleic acid). The absolute accuracy of 
mL cannot be better than the combined accuracies of N (5%) and dm (1%) because of the calibration procedure (Eq A2.1). In the experiments reported in this paper, which are 
focused on density, the accuracy of the calibration cancels out, as shown by the sensitivity study in Table 6. 

 
 

same volume and velocity (Eq. T1.1). Unfortunately, there
is no unique relationship between lift and drag forces. For
example, although neither a cube nor a sphere has a lift force
(Liu et al., 1995a), the drag force of a cube is 8% greater than

that of a sphere (Hinds, 1999). Nevertheless, given our exper-
imental setup employing PSL cores, a small beam divergence
is sufficient to conclude that we have spherical particles.

Atmos. Chem. Phys., 5, 275–291, 2005 www.atmos-chem-phys.org/acp/5/275/



Y. Katrib et al.: Density changes of aerosol particles 279

The dynamic shape factor differs whether the Knud-
sen number2 (Kn) is greater than 10 (e.g., vacuum con-
ditions and 100-nm particles) or 0.1<Kn<10 (e.g., in-
side the DMA, Jimenez et al., 2003a). We can sep-
arate the effects of shape from pressure by writing
χ=φ(shape, Kn(d))χ shape. Except for certain streamlined
shapes,χ shape>1.0. The termφ arises from the shape depen-
dence of the Cunningham slip correction factor, as follows:
Cc(shape, Kn(de))=φ(shape, Kn(d))Cc(Kn(de)) where,
for nonspherical particles, a useful concept is the volume
equivalent diameter (de), which corresponds to the volume
of a nonspherical particle reformed into a spherical particle.
To indicate thatP=1 atm and 0.1<Kn<10, which are the
conditions inside the DMA for submicron particles, we em-
ploy the designationχ ′

a (i.e., χ ′
a=φχ shape

=χ shape), which
we call the atmospheric dynamic shape factor. ForKn>10,
the correctionφ is not negligible. To indicate thatKn>10,
we employ the designationχv (i.e., χv=φχ shape). By def-
inition, φ(sphere)=1 andχ shape(sphere)=1. Therefore,
χ=χ ′

a=χv=1 for spherical particles.

2.2 Measurement of electric mobility diameter (dm)

The electric mobility diameter of a particle of arbitrary shape
equals the diameter of a sphere having the same electric
mobility. For example, a particle of arbitrary shape and
charge that has a mobility diameter of 100 nm behaves elec-
trophoretically as a 100-nm spherical particle having one
charge. Importantly, mobility diameter is independent of par-
ticle density.

The electric mobility diameters of the test aerosol particles
are measured via a TSI model 3071 differential mobility an-
alyzer (software version 3.2), which incorporates an aerosol
neutralizer (krypton-85 source). This instrument operates by
the principle of electrophoresis to classify positively charged
particles. A 10:1 sheath-to-polydisperse aerosol flow is used.
A charge correction algorithm assuming a Boltzmann dis-
tribution is employed, although the percentage of multiply
charged particles is not significant for the particle diameters
of 100 to 150 nm employed in the experiments. For this size
range, an impactor is also unnecessary.

2.3 Measurement of vacuum aerodynamic diameter (dva)

The aerodynamic diameter of a particle of arbitrary shape
and density is the diameter of a spherical particle of unit den-
sity (ρ0=1.000 g·cm−3) having an identical settling velocity
as the test particle. For example, a particle having an aerody-
namic diameter of 100 nm has a settling velocity equal to that
of a non-evaporating, 100-nm spherical particle of unit den-
sity, regardless of the particle’s true shape, density, or phys-

2The Knudsen number Kn given by
Kn=2λ

/
d≈13.4/(d[µm]P [kPa]) defines the continuum

(Kn<0.1), transition (0.1<Kn<10), and free molecular (Kn>10)
regimes

ical size. Because settling velocity depends on pressure via
the Cunningham slip correction factor (Cc) (Table 1), the de-
scription of an aerodynamic diameter is incomplete without
also consideringKn (cf. Sect. 2.1). The aerodynamic diam-
eter measured in the AMS is under conditions ofKn>10,
and we use the termdva for these conditions (Jimenez et al.,
2003a). As a result ofKn>10, the relationships shown for
dva in Tables 1 and 2 differ from equations used forda mea-
sured whenKn<10 (Murphy et al., 2004).

Although the aerodynamic diameter is strictly defined in
reference to a settling velocity, conveniently the velocity of
a particle accelerated through a critical-flow pressure drop
has an inverse power dependence on aerodynamic diameter,
provided that the particle Reynolds number is below unity
(Baron and Willeke, 2001). The Reynolds number is below
unity for submicron particles at the inlet pressure of the crit-
ical orifice of the AMS (Jayne et al., 2000).

A time-of-flight (TOF) measurement inside the AMS is
employed to determine particle velocity and, therefore, the
vacuum aerodynamic diameter. Specifically, after entering
the AMS through a 100-µm critical orifice, the particles are
accelerated and focused into a narrow beam (ca. 1 mm) by
passing through an aerodynamic lens (Jayne et al., 2000).
A spinning chopper wheel (180 Hz and 0.50% duty cycle)
placed at the exit of the aerodynamic lens forms pulses of
particles and defines time zero within 28µs uncertainty. The
particle beam impacts onto a vaporizer, which is a resistively
heated, 3.8-mm hotplate (ca. 350◦C). The semi-volatile con-
stituents of the particle are flash vaporized upon striking the
hot surface, the vapors are ionized by electron impact, and
the ions are detected by quadrupole mass spectrometry (MS).
The time difference between detection at the MS and time
zero yields the particle time of flight, from which the veloc-
ity of the particle is calculated and the vacuum aerodynamic
diameter is obtained. For example, 100-nm particles have
a time of flight of approximately 5 ms. The vaporization-
ionization-detection process usually occurs much faster than
the particle flight time, although in some cases particle va-
porization can be slow enough to measurably increase the
apparent flight time and thus lead to an overestimate of the
vacuum aerodynamic diameter. A tuned value of 41 amu is
used for the time-of-flight studies of oleic acid and its ozonol-
ysis products.

2.4 Measurement of aerosol layer mass (mL)

The operation principles to obtain quantitative aerosol mass
loadings (µg·m−3) using the AMS and given a stable test
aerosol are described in detail by Jayne et al. (2000), Jimenez
et al. (2003b), and Katrib et al. (2004). In brief, the
quadrupole mass spectrometer is tuned from 10 to 300 amu to
provide a mass spectrum of the volatilized constituents of the
particle ensemble. The total particle mass loading is obtained
based upon the calibrated response of the MS signal intensity
to mass. The measured aerosol mass loadings arise from the

www.atmos-chem-phys.org/acp/5/275/ Atmos. Chem. Phys., 5, 275–291, 2005



280 Y. Katrib et al.: Density changes of aerosol particles

mass present in the semi-volatile coatings surrounding the
PSL cores: the PSL core particles do not volatilize under the
usual operating conditions of 350◦C for the hotplate, and the
gas-phase species are removed by the pumping employed to
maintain vacuum conditions.

2.5 Measurement of particle number density (N )

The number concentration of the particles is determined by
SMPS measurements. Specifically, dN /dlogdm is integrated
across the mode at or just above 100 nm (depending on layer
thickness). A nanoparticle mode from 50 to 90 nm, which
may result from homogeneous nucleation of the oleic acid
vapor during the coating process or from deposition of the
oleic acid vapor onto sub-10 nm impurities in the atomized
water, lies below the lower limit of the integration. (We also
tested the approach of measuringN via the single-particle ca-
pability of the AMS. We found, however, that this approach
is less accurate in our experimental setup because the small
layer mass of ca. 10−15 g on individual particles implies that
a fraction of the individual particles fails to trigger a counting
threshold on the AMS. Integrated properties such as aerosol
layer mass are, however, still accurately measured.)

2.6 Calculation of layer thickness (L)

Under the assumption of a uniform coating on spherical par-
ticles, the increase of particle geometric diameter beyond that
of the PSL core is twice the layer thickness of the organic
coating. Equation (T1.5) shows thatL=(dm/χa−101)/2.

2.7 Calculation of particle layer mass (m̄L)

We calculate the average layer mass per particle (m̄L) by
two independent methods. In the first method, measure-
ments of aerosol layer mass and particle number concentra-
tion (Sects. 2.4 and 2.5) are combined to yield:

m̄L (mL, N) = mL/N (1a)

In the second method, measurements of vacuum aerody-
namic diameter, mobility diameter, and dynamic shape factor
are combined using Eqs. (T1.2), (T1.3), and (T1.4) to yield
the following equation:

m̄L (dva, dm, χa, χv) =
π

6
(ρ0dvad

2
mχv/χ

2
a −ρcored

3
core)(1b)

2.8 Calculation of particle (ρp) and layer (ρL) densities

The measurements can be employed to calculate the den-
sity of the particle and of the organic outer layer. There
are two independent methods for doing so. Particle den-
sity can be calculated byρp=f (dva, dm, χa, χv) (Eq. 2a) or
ρp=f (m̄L, dm, χa) (Eq. 2b)(cf. Eq. T1.6), as follows:

ρp (dva, dm, χa, χv) = ρ0χaχv

dva

dm

(2a)

ρp (m̄L, dm, χa) =
χ3

a

d3
m

(
6m̄L

π
+ ρcored

3
core

)
(2b)

The quantitative results of these two independent methods
can be compared to each other. In Eq. (2b), we use Eq. (1a)
to evaluatem̄L.

Particle layer density is determined by two independent
methods through the use of Eqs. (T1.2), (T1.4), and (2a), as
follows:

ρL (dva, dm, χa, χv) =

(
ρ0χaχvdva/dm − ρcoreχ

3
a (dcore/dm)3)(

1 − χ3
a (dcore/dm)3) (3a)

ρL (m̄L, dm, χa) =
6m̄L/π(

(dm/χa)
3
− d3

core

) (3b)

An effective density, which relatesdm to da , is com-
monly reported in the literature (DeCarlo et al., 2004). The
effective density evaluates asρe=ρp/χ3

a in the governing
equationd2

aρ0=ρed
2
m when da and dm are measured for

0.1<Kn<10 (e.g., when aerodynamic diameter is deter-
mined by impaction at 1 atm) (Kelly and McMurry, 1992).
Under our experimental conditions employing the vacuum
aerodynamic diameter, however, the effective density evalu-
ates asρve=ρp/χaχv in the governing equationdvaρ0=ρvedm

for the measureddva anddm (cf. equations in Table 2). There
is, therefore, a change in the governing equation from a
quadratic to a linear form depending on experimental con-
ditions. In the analysis of this paper, we do not employ an
effective density because we determine that we have spher-
ical, nonporous particles (χ=1), in which case the effective
density equals the density.

3 Results and discussion

3.1 Spherical particle shape

The divergence of the particle beam inside the AMS, which
is defined as 90% of the integrated transmission in agree-
ment with Liu et al. (1995a), is an indicator of particle shape.
For example, the beam profiles of several calibration parti-
cles show that spherical particles, such as liquid oleic acid
or aqueous sodium chloride, have the narrowest Gaussian
profiles (Fig. 2a). In comparison, particle beams of unre-
acted and reacted coated particles have similar Gaussian pro-
files, regardless of layer thickness. We therefore conclude
that these particles are also spherical. The volume fraction
of the inert PSL core is high, which is important for main-
taining sphericity. Consistent with this finding, we assume
in our analysis that the particles are radially symmetric and
nonporous.

The solid angle of beam divergence for spherical particles
is approximately 0.40×10−5 sr in our apparatus, which can
be compared to 1.69×10−5 sr for spherical 100-nm dioctyl
sebacate (DOS) particles (density of 0.912 g cm−3) in the
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aerodynamic lens of Liu et al. (1995b). Although the beam
divergences are similar, the small differences may arise
from differences in the design of the aerodynamic lens in-
stalled in the AMS compared to the one employed by Liu et
al. (1995b). In contrast to the spherical particles, the beam di-
vergence in our apparatus is approximately 1.6×10−5 sr for
crystalline sodium chloride particles. Liu et al. (1995b) es-
timate that�=10.6×10−5 sr for 100-nm crystalline sodium
chloride particles. Given this evidence of nonvanishing lift
force, Liu et al. (1995b) infer that the crystalline particles are
imperfect cubes. Liu et al. generate crystalline particles via
evaporation of aqueous particles having a primary diameter
of 10–15µm (Collision atomizer) as compared to the submi-
cron primary particles (TSI 3076) of this study. The different
primary sizes may affect the morphology of the dried parti-
cles. Liu et al. (1995b) also discuss an exact transformation
from a lateral beam profile to a gaussian beam divergence.
We did not carry out this detailed analysis, so the stated beam
divergences are approximate.

We can test our supposition that the calibration liquid par-
ticles are spherical. Specifically, the dynamic shape factor
can be calculated using Eqs. (T1.1–T1.3) as:

χ shape
=[

ρpdm

/
ρ0dva

φ(shape, Kn>10)φ(shape, 0.1 <Kn<10)

Cc(Kn(de))

Cc(Kn(dm))

]1/2

(4)

In the case of pure oleic acid particles (i.e., devoid of a PSL
core), we knowρp=0.895 g·cm−3. When we measure a mo-
bility diameter of 350 nm, we correspondingly measure a
vacuum aerodynamic diameter of 315 nm. Therefore, given
φ(shape, Kn)=1 anddm=de (both true for spheres), we cal-
culate thatχ shape=1.00.

Figure 2b shows that neat PSL particles diverge slightly,
implicating a slightly nonspherical shape, which could arise
because of impurities that adsorb on the PSL when atomizing
an aqueous suspension of the PSL particles. This observation
is important because the time of flight of these particles is
employed to calibrate the aerodynamic diameter of the AMS,
for which χ=1 is assumed. Similarly, the SMPS flows are
adjusted for maximum transmission of these PSL particles
when the voltage is tuned to correspond to a 101-nm mobility
diameter. The reliability of this approach assumes that the
mobility diameter corresponds to the geometric diameter of a
sphere. The effects on our results of these uncertainties in the
AMS and SMPS calibrations are discussed in the appendix.
A 2-nm coating of oleic acid on the PSL particles is sufficient
to restore a spherical shape (Fig. 2b).

3.2 Increase in particle layer density as a result of chemical
reaction

Two distinct and independent methods are available to us
to calculate particle density (ρp; Eqs. 2a and 2b) and layer
density (ρL; Eqs. 3a and 3b). The first method, given by
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Fig. 2. Beam profiles. Transmission is the relative signal intensity at
the electron multiplier when 0.3 mm of the particle beam is blocked.
The upper axis indicates the corresponding solid angle of beam di-
vergence.(a) Unreacted (N) and reacted (viz. 1.0 normalized ozone
exposure) (H) particles having oleic acid coatings and polystyrene
latex cores. Also shown are the beam profiles for pure oleic acid
(•), aqueous sodium chloride (80% RH) (�), and crystalline sodium
chloride (30% RH) (�) aerosol particles. Conditions:dva=130 nm.
(b) PSL particles having no coating (◦) (dva=107 nm) compared to
those having a thin oleic acid coating (�) (dva=111 nm). (We use
an AMS vaporizer temperature of 350◦C for the study of oleic acid,
850◦C for the study of sodium chloride, and 900◦C for the study of
polystyrene latex.)

Eqs. (2a) and (3a), is based upon measurements of mobil-
ity and aerodynamic diameters. Figure 3 provides an exam-
ple of measurements of mobility and aerodynamic diameters
and their changes upon ozone exposure. The diametersdm

and dva are initially 151 and 154 nm, respectively. Based
upon Eq. (T1.5), the oleic acid layer thickness is 25 nm. The
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Fig. 3. (a)Aerodynamic diameter and(b) mobility diameter mass
size distributions of unreacted particles (solid line) and particles af-
ter 0.6 normalized ozone exposure (dashed line). The theoretical
DMA transfer function for our flow conditions is shown as a heavy
dashed line. The dN /dlogdm measurements of the SMPS are trans-
formed into the plot of dmL/dlogdm shown inb by usingmL=0 for
dm<dcore and Eqs. (1a) and (3b) fordm≥dcore. We useρL=0.895
in Eq. (3b) for unreacted particles andρL=1.05 for reacted parti-
cles, as determined by application of Eq. (3a). The good agreement
on the scale of the y-axes between (a) and (b) is noteworthy. Con-
ditions: initial 25-nm oleic acid coating on polystyrene latex cores;
AMS tuned to 41 amu fordva measurements.

diametersdm anddva change to 141 and 160, respectively,
upon 0.6 normalized ozone exposure. (95% loss of oleic acid
loss is defined as 1.0 normalized ozone exposure.) The re-
sults for various layer thickness at 0.0 and 1.0 normalized
ozone exposure are reported in Table 3. The layer thickness
of the reacted particles decrease by ca. 25% at 1.0 normal-
ized ozone exposure, which is consistent with a concomi-

d m
 (n

m
) dva  (nm

)

Figure 4

165

160

155

150

145

165

160

155

150

145

a

m
L 

(µ
g·

m
-3

)

14

13

12

11

10

10000

9500

9000

8500

8000

7500

7000

N
 (#·cm

-3) 

b

1.50

1.45

1.40

1.35

1.30

1.25

1.20

2.01.51.00.50.0

m
L 

(1
0-1

5 g)

Normalized Ozone Exposure

c

Fig. 4. (a) Variation of the aerodynamic and the mobility diame-
ters with increasing normalized ozone exposure. Key:dm (�) and
dva (�). (b) Measured/predicted aerosol layer mass with increasing
normalized ozone exposure. Also shown is the measured particle
number density. Key:mL measured (�), mL predicted by com-
bining Eqs. (1a) and (1b) (�), and measuredN(+). (c) Calculated
and predicted particle layer mass with increasing normalized ozone
exposure. Key:m̄L calculated by using Eq. (1a) (�) andm̄L pre-
dicted by Eq. (1b) (�). Conditions (a), (b), and (c): initial 30-nm
oleic acid coating on polystyrene latex cores.

tant decrease in aerosol layer mass (mL) due to the evapora-
tion of volatile reaction products such as 1-nonanal (Moise
and Rudich, 2002; Thornberry and Abbatt, 2004; Hearn and
Smith, 2004). The changes indm anddva with increasing
ozone exposure are shown in Fig. 4a for an initially 30-nm
layer thickness. The general finding is that, regardless of
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Fig. 5. (a) Layer density for increas-
ing normalized ozone exposure for 8-
nm (•), 11-nm (N), 18-nm (H), 25-nm
(on), and 30-nm (�) coatings (Eq. 3a).
(b) Layer density relative to that of pure
oleic acid for increasing normalized
ozone exposure, as calculated by two
independent methods (Eqs. 3a and 3b).
Also shown is the percent difference be-
tween the layer density calculated by
Eq. (3a) versus by Eq. (3b), %δρL. Key:
predictedρL (Eq. 3a) (�) and predicted
ρL (Eq. 3b) (�). (c) Correlation of the
layer density (Eq. 3a) with the carbon-
normalized oxygen content (z/x) of the
average chemical composition CxHyOz
of the reacted particles. Conditions (b)
and (c): initial 30-nm oleic acid coating
on polystyrene latex cores.

initial layer thickness,dm decreases whiledva increases for
increasing ozone exposure.

These observations of a decrease indm and an increase
in dva are in good agreement with related previous reports
on the reaction of oleic acid aerosol particles with ozone.

Upon ozone exposure, Morris et al. (2002) and Smith et
al. (2002) both report that the aerodynamic diameter of oleic
acid aerosol particles increases. Broekhuizen et al. (2005)1

report that the mobility diameter decreases. More specifi-
cally, a fractional aerodynamic diameter increase of 1.02 is
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observed by Morris et al. (2002) for 600 nm particles for a
normalized ozone exposure approximately 0.4. In compari-
son, an increase of 1.03 is measured in our study for 154-nm
aerodynamic particles after a normalized ozone exposure of
0.6. Broekhuizen et al. (2005)1 report that the mobility diam-
eter decreases by an amount equivalent to 25% of the parti-
cle volume after stoichiometric reaction of oleic acid with
ozone, a result which is consistent with the 25% yield of
nonanal in the gas-phase. This result is consistent with the
25% decrease in layer mass and layer thickness observed in
our experiments at 1.0 normalized ozone exposure.

The general finding that the mobility diameter decreases
while the vacuum aerodynamic diameter increases implies,
for spherical particles, that particle density increases with
increasing ozone exposure (cf.ρp=ρ0χaχv (dva/dm) in Ta-
ble 2). Regardless of initial layer thickness, layer density in-
creases with increasing normalized ozone exposure (Eq. 3a;
Fig. 5a). Overall, layer density increases from 0.89 g·cm−3

for pure oleic acid to 1.12 g·cm−3 for reacted particles at
higher ozone exposures. This result confirms the earlier sug-
gestion by Katrib et al. (2004) that layer density increases.
This finding of a layer density of 1.12 g·cm−3 can be com-
pared to the result of 1.09 g·cm−3 reported in the recent study
of Broekhuizen et al. (2005)1. Broekhuizen et al. (2005)1

indirectly infer density from measurements of the products,
their yield, and their evaporation.

The second method for calculating particle and layer den-
sities (Eqs. 2b and 3b) is based upon measurements of layer
mass and particle mobility diameter. An example of the de-
crease in mobility diameter with increasing ozone exposure
is shown in Fig. 4a for a particle having a 30-nm coating. The
corresponding decrease in layer mass with increasing ozone
exposure is shown in the aerosol mass measurements of the
AMS (solid symbols in Figs. 4b) and the measurements of
layer mass given both by Eqs. (1a) and (1b) (solid and open
symbols, respectively, in Fig. 4c). Layer density calculated
via Eq. (3b) based upon the measurements of layer mass
(Eq. 1a) and the mobility diameter is shown as open symbols
in Fig. 5b for increasing ozone exposure.

The two independent methods of calculating layer density
agree well (Fig. 5b). The method based upon mobility and
aerodynamic diameters (Eq. 3a) is systematically approxi-
mately 1.6% below the method based upon mobility diameter
and particle layer mass (Eq. 3b). Uncertainties that possibly
explain the systematic differences are analyzed further in the
appendix.

Figure 5 shows that the particle properties change most
rapidly at low ozone exposures (e.g., below 1.0) and ap-
proach limiting values at higher ozone exposures (e.g., above
3.0). This observation is consistent with the rapid reac-
tion of ozone with oleic acid because oleic acid is, by def-
inition, present at high concentrations for low ozone expo-
sures. Particle properties, however, clearly continue to evolve
even when oleic acid is no longer present at ozone exposures
above 1.0. The implication is that the oxidation products of

oleic acid with ozone continue to react with ozone (albeit at
a lower reaction rate) and/or themselves. This result is con-
sistent with the findings of Broekhuizen et al. (2005)1, who
observed that the CCN properties of ozone-processed oleic
acid particles continue to evolve, even up to a normalized
ozone exposure of 1000.

The chemical basis for the increase in layer density is the
addition of oxygen to a hydrocarbon. The atomic weight of
oxygen is greater than that of either carbon or hydrogen, so
the addition of oxygen to a hydrocarbon usually has the ef-
fect of increasing density. The increase in layer density is
most rapid at low ozone exposures (Fig. 5b), which is con-
sistent with the initial rapid oxygen uptake due to the for-
mation of oxygenated products by the fast reaction of ozone
with oleic acid. For example, Katrib et al. (2004) report that
9-oxononanoic acid, which is more oxygenated than oleic
acid, forms with 20 to 35% carbon-normalized yield. Also
reported is the formation of other, unidentified oxygenated
molecules at a yield of 35–50%. (Volatile products, such
as 1-nonanal, which do not contribute to the layer mass,
are formed at approximately 25% yield.) Although all of
the condensed-phase products cannot be identified, the over-
all carbon-normalized oxygen content (z/x) of the CxHyOz
organic layer can, nevertheless, be assayed by analysis of
the mass spectra (cf. Katrib et al., 2004). Infrared obser-
vations by Asad et al. (2004) also indicate the formation of
oxygenated functional groups and, therefore, an increase in
z/x. Figure 5c shows that, asz/x increases from 0.1 for un-
reacted oleic acid to 0.25 after high ozone exposure, layer
density concomitantly increases. The relationship between
layer density andz/x is monotonic, though not linear. The
chemical observations made by the AMS of increasing oxy-
gen content in the chemistry of the organic layer are con-
sistent with the physical changes apparent in the increasing
layer density.

3.3 Uncertainty analysis

Although Table 3 shows excellent agreement among the
quantitiesm̄L, ρp, andρL when calculated by two indepen-
dent methods and thus generally validates our experimental
approach, we can, nevertheless, consider several random un-
certainties in our measurements and systematic errors in our
analysis, which can serve to focus our future efforts to fur-
ther improve measurements and calculations. The random
uncertainties in our analysis derive from the precision of the
primary measurementsχ , dm, dva , mL, andN . The sys-
tematic errors in our analysis include (1) a monodisperse-
based analysis for a weakly polydisperse aerosol (geometric
standard deviation of 1.1), (2) an assumption of equivalency
between the AMS-derived mass median diameter (MMD)
and the SMPS-derived count median diameter (CMD), (3)
the accuracy ofdm anddva when the SMPS and AMS are
calibrated with slightly nonspherical PSL particles, (4) the
accuracy ofmL when the measured aerosol mass includes
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some organic mass in the nanoparticle mode, and (5) the ac-
curacy ofmL when the ionization efficiencies of the ozonol-
ysis products differ from that of oleic acid. There are also
possible effects of covarying systematic errors ofdm andN

with mL because of the AMS calibration procedure. These
random and systematic uncertainties are addressed in the ap-
pendix by beginning with an assessment of measurement un-
certainties and propagating the uncertainties through the gov-
erning equations (Eqs. 1 to 3).

An a posteori assessment of uncertainties is also possible
because we have two independent equations (i.e., Eq. 1a ver-
sus 1b, 2b versus 2a, or 3a versus 3b). Figure 6 shows the
results of aerosol mass measurements by Eq. (1a) compared
to those by Eq. (1b). In Fig. 6a, the 1:1 line of aerosol mass
is shown for increasing ozone exposure. The fit to the data
has a slope of 1.018, suggesting a small systematic differ-
ence with increasing ozone exposure. Random uncertainties,
given by the standard deviation of the residual of data around
the line of slope 1.018, are 3%. We regard these percent dif-
ferences as small, and their possible sources are addressed in
the appendix.

A second a posteori assessment is given in Fig. 6b by
comparing aerosol layer mass measured by three indepen-
dent methods for unreacted layers. Aerosol layer mass can
be directly measured by the AMS, can be predicted by com-
bining Eqs. (1a) and (1b), and, for layers of unreacted oleic
acid, can be predicted by Eq. (5):

mL = N
(
0.468 g/cm3

) (
d3
m/χ3

a − d3
core

)
(5)

This equation is obtained by substitution of Eq. (T1.4) into
Eq. (1a) using the layer density of oleic acid. The comparison
of aerosol layer mass obtained by these three independent
methods is shown in Fig. 6b. The good agreement among
these methods supports the validity of the experimental re-
sults.

4 Conclusions

This study introduces an innovative experimental setup that
allows for multifaceted characterization of changes in the
density, the chemical composition, and the shape of aerosol
particles due to heterogeneous chemical reactions. The re-
actions of oleic acid core-shell aerosol particles with ozone
are employed as a model system to illustrate the complex,
nonlinear particle aging processes that are an integral part of
aerosol heterogeneous chemistry. Ozone exposure is shown
to decrease the mobility diameter while increasing the vac-
uum aerodynamic diameter, a result which implies that parti-
cle density increases. The evolution of the particle density is
confirmed by two independent methods, which agree within
2%. Analysis of the particle chemical composition shows
that the oxygen content of the reacted organic layer increases
as density increases. These changes continue even after all
of the oleic acid has reacted, which indicates that chemical
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Fig. 6. (a)Comparison ofmL predicted by Eq. (1b) versus (1a). The
1:1 line is shown. The masses are normalized to the corresponding
unreacted layer mass of oleic acid. Data are shown for 8-nm (•), 11-
nm (N), 18-nm (H), 25-nm (on), and 30-nm (�) coatings.(b) (btm)
Three approaches for measuring layer mass for aerosol particles
having oleic acid coatings of several layer thickness on polystyrene
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Eqs. (1a) and (1b) (◦), andmL predicted by Eq. (5) (1). (middle)
Percent difference between the measured and predicted masses (�
versus◦), %δmL,1. (top) Percent difference between the measured
and predicted masses (� versus1), %δmL,2. (ThemL value shown
at “0 nm” corresponds to a layer thinner than 2 nm, which is too thin
for the SMPS but has sufficient mass for detection by the AMS.)

reactions continue, either with ozone or with themselves, for
the organic products.

Aerosol heterogeneous chemistry, both in the atmo-
sphere and in the laboratory, significantly alters the
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physical properties and the chemical composition of particles
(Rudich, 2003). The evolution of particle density directly
affects the mechanical, chemical, and optical properties of
aerosol particles. Particle density affects aerosol removal
processes and hence lifetime in the atmosphere because it
directly alters aerodynamic diameter and thus the rate of dry
deposition. Moreover, the changes in refractive index with
density may alter the magnitude of aerosol direct radiative
forcing. Particle density also impacts the deposition of in-
haled particulate matter, both in its retained quantity and in
its deposition locations in the lungs.

By forming polar functional groups, aerosol heteroge-
neous chemistry can influence particle hygroscopicity. Asad
et al. (2004) have shown, for example, that increased wa-
ter uptake occurs when an oleic acid film is transformed
into products by reaction with ozone. Higher water uptake
could possibly lead both to enhanced CCN activity and thus
changes in the physical and optical properties of clouds and
to an increased wet deposition rate and thus reduced atmo-
spheric lifetime of aerosol particles.

The aerosol processes described in this paper are applica-
ble to a wide range of olefinic organic molecules, of which
oleic acid is just one member, and to a range of atmospheric
oxidants, including not just ozone but also hydroxy and ni-
trate radicals. The approaches introduced in this paper for
the study of aerosol heterogeneous chemistry will allow the
continued development of more detailed and accurate aerosol
process-descriptions in models of air quality and atmospheric
chemistry.

5 List of terms

de: volume equivalent diameter (nm)
dm: mobility diameter (nm)
dva : vacuum aerodynamic diameter (nm)
L: layer thickness (nm)
mL: aerosol layer mass (µg·m−3) (sum of layer mass of all
particles)
m̄L: particle layer mass (g·particle−1) (layer mass of
individual particle)
Kn: Knudsen numberN : particle number concentration
(#·cm−3) measured by SMPS analysis

ρL: layer density (g·cm−3)

ρp: particle density (g·cm−3)

ρ0: unit density (1.000 g·cm−3)

χ : dynamic shape factor
χa : χ ′

a lumped with transition-regime Cunningham slip cor-
rection factors (see Eq. T 1.2)
χ ′

a : dynamic shape factor at 1 atm and 0.1<Kn<10 (i.e.,
submicron particles in the DMA)
χv: dynamic shape factor forKn>10 (i.e., submicron parti-
cles in the vacuum of the AMS)

Appendix

A1. Precision of the measurements and the effects of random
errors

The precisions of the primary measurements ofχ , dm, dva ,
mL, andN , which are summarized in Table 3, are estimated
as follows. The measurement of the dynamic shape factor
is taken as completely precise and accurate (i.e., 0% uncer-
tainty) because of the evidence we have for spherical parti-
cles. The precisions of the measurements of the mobility and
vacuum aerodynamic diameters are taken as 1% based upon
evaluations of instrument performance (Jayne et al., 2000).

Based upon the residuals shown in Fig. 6b, we estimate
that the one-sigma precision of our measurement ofmL is
2%. A related conclusion is that, under our experimental
conditions, the oleic acid mass present in the particle coat-
ings completely vaporizes at an AMS heater temperature of
350◦C and is efficiently collected and measured by the AMS.
Moreover, Eqs. (1a) and (5) are equivalent if the AMS instru-
ment is stable from the time of calibration to the time of mea-
surement, if the AMS signal scales linearly with mass, and
if the AMS signal is independent of particle geometry (i.e.,
homogeneous calibration particles versus core-shell test par-
ticles). The good agreement shown in Fig. 6b is a validation
of these assumptions.

In our experimental setup, accuracy and precision in the
measurement of the particle number density are most dif-
ficult (Ankilov et al., 2002). Although the manufacturer’s
manual suggests an error of 0.5% for the particle concen-
trations and the flow rates of the SMPS setup, our applica-
tion involves integrating dN /dlogdm across the super 100-nm
mode. This mode overlaps weakly with a nanoparticle mode
centered around 50 to 90 nm. Given the mode overlap, the
charge correction factors, and the uncertainties in the DMA
transmission function, we estimate an accuracy of 5% in our
measurement ofN .

The uncertainties in the calculated quantitiesL, m̄L, ρp,
andρL, which are based upon the combined random uncer-
tainties of the primary quantities, are shown in Table 3 for
all layer thickness. The one-sigma uncertainties are obtained
using a Monte Carlo simulation of 10 000 trials. In this simu-
lation, an equation (e.g., Eq. 2b) is evaluated repeatedly with
a random variation of the input quantities within their sta-
tistical uncertainty. The mean and the standard deviation of
the resulting set of numbers are the entries for the derived
quantities in Table 3.

Except forL, the derived quantities have two independent
equations for their evaluation. When the random uncertainty
estimates are correct, one would expect that the calculations
by the independent methods would agree with each other
within experimental uncertainty. The comparison of any two
columns (e.g.,m̄L by Eq. 1a versus by Eq. 1b) shows that
not only is this condition met but also appears to be met
even better than would be expected from the uncertainties.
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Table 4. Sensitivity analysis for experiments #2 and #6. The percent perturbation to the derived quantities is shown for 1% perturbation to
the primary measurements.

Sensitivity (%δ)

Experiment Perturbation L m̄L m̄L ρp ρp ρL ρL

#2 χ 1.00 δχ=+1% −7.24 0.00 −3.02 2.01 3.03 5.69 8.99
dm 117 δdm=+1% 7.31 0.00 6.13 −0.99 −2.94 −2.18 −7.83
dva 118 δdva=+1% 0.00 0.00 3.05 1.00 0.00 3.05 0.00
mL 2.5 δmL=+1% 0.00 1.00 0.00 0.00 0.33 0.00 1.00
N 9100 δN=+1% 0.00 −0.99 0.00 0.00 −0.32 0.00 −0.99

#6 χ 1.00 δχ=+1% −2.66 0.00 −1.37 2.01 3.03 2.64 4.06
dm 161 δdm=+1% 2.68 0.00 2.77 −0.99 −2.94 −1.20 −3.87
dva 152 δdva=+1% 0.00 0.00 1.38 1.00 0.00 1.38 0.00
mL 14.1 δmL=+1% 0.00 1.00 0.00 0.00 0.72 0.00 1.00
N 9500 δN=+1% 0.00 −0.99 0.00 0.00 −0.72 0.00 −0.99

Eq. (T1.5) Eq. (1a) Eq. (1b) Eq. (2a) Eq. (2b) Eq. (3a) Eq. (3b)

A bootstrap data analysis based upon comparison of the two
columns of data would suggest smaller uncertainties. A rea-
sonable conclusion is, therefore, that the uncertainty esti-
mates given in Table 3 for the primary quantities are too
large.

Convolution of the precisions of the primary measure-
ments with the sensitivities of the derived quantities, which
are respectively given in Tables 3 and 4, immediately re-
veals the primary measurement most affecting the random
uncertainty in the calculated quantity. For example, a
5% increase inN (Table 3) yields a 3.60% decrease (i.e.,
(−0.72)/(1%)×(5%); Table 4) inρp calculated by Eq. (2b)
for a 30-nm coating. An overall analysis by this approach
shows that the random uncertainty inL for a 30-nm coating
is due mostly to uncertainty indm, in m̄1a

L (i.e.,m̄L calculated
by Eq. 1a) toN , in m̄1b

L to dm, in ρ2a
p equally todm anddva ,

in ρ2b
p to N , in ρ3a

L to dva , and inρ3b
L to N . The same results

hold for an 8-nm coating, except that the largest uncertainties
in ρ2b

p andρ3b
L derive from uncertainty indm instead of inN .

In all cases, the sensitivity of the thin layer is either equal to
or greater than that of the thick layer.

The sensitivity analysis given in Table 4 shows how a 1%
perturbation in any of the primary measurements (χ , dm, dva ,
mL, andN) affects the calculated quantitiesL, m̄L, ρp, and
ρL for thin (8 nm) and thick (30 nm) oleic acid coatings. Ta-
ble 4 has great utility for assessing systematic errors in the
analysis, as described in the next six sections.

A2. Monodisperse-based analysis of a weakly polydisperse
aerosol

The systematic error introduced by a monodisperse-based
analysis of a weakly polydisperse aerosol can be estimated
by comparing the results obtained for a monodisperse dis-

tribution to those obtained using a 3-bin polydisperse dis-
tribution. Based upon a geometric standard deviation (gsd)
of 1.08, the bins are centered at{dm/1.08,dm, 1.08dm} and
{dva /1.08,dva , 1.08dva}. Each bin has a 101-nm PSL core.
The particle number density in the bins is taken in the ratio
1:3:1. The mass of a layermL is distributed within the bins
in proportion to the layer volume. A Monte Carlo simulation
to account for random uncertainties is applied. The average,
mass-weighted calculated quantitiesL, m̄L, ρp, andρL are
obtained and compared to those same quantities under the
assumption of a monodisperse distribution. The results for
8- and 30-nm coatings are summarized in Table 5 under the
perturbation labeled “polydispersity”. The quantities most
strongly affected arēm1b

L , ρ2b
p , andρ3b

L . In all cases, the ef-
fects on thin layers are equal to or greater than the effects on
thick layers.

A3. AMS-derived mass median diameter and the SMPS-
derived count median diameter

Our analysis assumes an equivalency between the AMS-
derived mass median diameter and the SMPS-derived count
median diameter. Namely, in our analysis we obtaindm from
the maximum of dN /dlogdm measured by the SMPS system
and dva from the maximum of dmL/dlogdva measured by
the AMS. The Hatch-Choate conversion between CMD and
MMD yields (Hinds, 1999):

MMD/CMD= exp
(
3 ln2 gsd

)
(A1)

The ratio MMD/CMD is 1.018 for a gsd of 1.08. The effects
of a systematic reduction ofdva by 1.8% are shown in Ta-
ble 5. The most affected quantities arem̄1b

L , ρ2a
p , andρ3a

L for
both 8-nm and 30-nm coating.
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Table 5. Effect of systematic errors on calculated quantities. This table is derived by assuming that the perturbations given in Table 4 are
linear (e.g., %δL for δdm=+2% is assumed to equal 2%δL for δdm=+1%). The maximum effect of uncertainties in the ionization efficiency
depends on ozone exposure and is evaluated in the table for 1.0 normalized ozone exposure (see text).

Sensitivity (%δ)

Experiment Correction Applied L m̄L m̄L ρp ρp ρL ρL

#2 χ 1.00 1. polydispersity 1.3 −1.6 4.0 0.0 −1.6 0.4 −4.2
dm 117 2. MMD vs CMD 0.0 0.0 −2.5 −1.8 0.0 −2.5 0.0
dva 118 3. PSL calibration −7.3 0.0 −3.1 2.0 2.9 5.2 7.8
mL 2.5 4. nanomode mass 0.0 −2.5 0.0 0.0 −0.8 0.0 −2.5
N 9100 5. ionization efficiency 0.0 −1.7 0.0 0.0 −0.6 0.0 −1.7

#6 χ 1.00 1. polydispersity 0.5 −0.1 2.6 0.0 −1.6 0.1 −2.2
dm 161 2. MMD vs CMD 0.0 0.0 −5.4 −1.8 0.0 −5.4 0.0
dva 152 3. PSL calibration −2.7 0.0 −1.4 2.0 2.9 2.6 3.9
mL 14.1 4. nanomode mass 0.0 −2.5 0.0 0.0 −1.8 0.0 −2.5
N 9500 5. ionization efficiency 0.0 −1.7 0.0 0.0 −1.2 0.0 −1.7

Eq. (T1.5) Eq. (1a) Eq. (1b) Eq. (2a) Eq. (2b) Eq. (3a) Eq. (3b)

Although this analysis suggests that routinely accounting
for the entire size distribution in our calculations would lead
to more accurate results, there are complicating factors due
to the tail in the data of the vacuum aerodynamic diame-
ter (Fig. 3a). The tail in the size distribution measurements
of the AMS and its change with increasing ozone exposure
(Fig. 3a), both of which are absent in the corresponding
SMPS data (Fig. 3b), arise from the low volatility of oleic
acid and the further reduced volatility of the reaction prod-
ucts. Namely, because the AMS measurement is based upon
time of flight, a slower vaporization of reacted particles as
they strike the vaporizing heater explains the tail in the AMS
data. The extension of the tail following ozone exposure is
consistent with the decreased volatility of the reaction prod-
ucts compared to the parent material of oleic acid. For this
reason, we restrict the analysis to mode size, which allows us
to correlate particles measured by the AMS with those mea-
sured by the SMPS, to the extent that the MMD and CMD
are the same.

A4. Nonspherical PSL calibration particles

The calibration ofdm anddva in the SMPS and AMS, re-
spectively, assumes spherical particles, although our mea-
surement of the beam profile demonstrates that uncoated PSL
particles are slightly nonspherical. An approximate esti-
mate ofχ=1.01 for calibration PSL particles can be made
by comparing the PSL beam profile to that of liquid parti-
cles (Fig. 2b). In this case, the measureddm is systematically
underreported by 1%. Similarly, the measureddva is system-
atically overreported by 1%. Table 5 summarizes the effects
of δdm=−1% andδdva=+1% on the calculated quantities for
8- and 30-nm coatings. The changes for the 30-nm coating
are less than or equal to those of the 8-nm coating.

A5. Nanomode mass

The measuredmL should be reduced to correct for the or-
ganic mass in the 50- to 90-nm nanoparticle mode. Unlike
layer thickness, the mass in the nanomode is not highly re-
producible in the experiments. However, 5% is an upper
limit of the observations. Although the absolute mass in the
nanomode decreases for thinner layer thickness, the relative
mass remains roughly constant. The effects of a systematic
reduction ofmL by 2.5% are shown in Table 5. Most affected
arem̄1a

L andρ3b
L , which are both reduced by 2.5%.

A6. Ionization efficiencies of ozonolysis products

The MS signal intensity of a semi-volatile species is propor-
tional to its ionization efficiency (Jayne et al., 2000). There-
fore, any error in the employed ionization efficiency leads
to an error inmL. We apply the calibration for oleic acid
to all organic molecules, thus assuming the ionization effi-
ciency is invariant throughout the molecular family of oleic
acid and its ozonolysis products (Katrib et al., 2004). Ka-
trib et al. (2004) show that the known products, including
azelaic acid, nonanoic acid, and 9-oxononaoic acid, do have
comparable ionization efficiencies as oleic acid. However,
this assumption cannot be tested for other ozonlysis products
due to their unknown chemical structure and hence absence
of calibration compounds. The uncertainty inmL therefore
increases with ozone exposure due to the loss of oleic acid
and the formation of some products of unknown ionization
efficiency.

The maximum impact of this assumption can be estimated
by assigning all deviation from the 1:1 line of Fig. 6a to a
systematic variation in ionization efficiency. Under this treat-
ment, Eq. (1b) is taken as totally accurate, and the deviation
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Table 6. Effect of systematic errors ofdm or N on calculated quantities when including the effect of a covarying systematic error in the
AMS calibration. “PSL calibration” corresponds toδdm=+1%,δmL=+3%, andδdva=−1%.

Sensitivity (%δ)

Experiment Covariance Perturbation L m̄L m̄L ρp ρp ρL ρL

#2 χ 1.00 δdm=+1%→δmL=+3% 7.31 3.00 6.13 −0.99 −1.95 −2.18 −4.83
dm 117 δN=+1%→δmL=+1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dva 118 PSL calibration (see caption) −7.3 −3.0 −3.1 2.0 2.0 5.2 4.8
mL 2.5
N 9100

#6 χ 1.00 δdm=+1%→δmL=+3% 2.68 3.00 2.77 −0.99 −0.78 −1.20 −0.87
dm 161 δN=+1%→δmL=+1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dva 152 PSL calibration (see caption) −2.7 −3.0 −1.4 2.0 0.8 2.6 0.9
mL 14.1
N 9500

Eq. (T1.5) Eq. (1a) Eq. (1b) Eq. (2a) Eq. (2b) Eq. (3a) Eq. (3b)

between Eqs. (1a) and (1b) provides an estimate of the vari-
ation of the ionization efficiency. The slope of the com-
parison line is 1.018, implying that the recorded mass of
the ozonolysis products is slightly too high and, therefore,
that the ionization efficiency of the ozonolysis products is
slightly less than that of oleic acid. The impact is estimated
by (%δmL)max=−1.8%

(
1 − mL/mL,OL

)
. The equation

shows that the maximum error increases with loss of oleic
acid. Table 5 shows the effect for(%δmL)max= − 1.7%,
which corresponds to 1.0 normalized ozone exposure. Most
affected arem̄1a

L andρ3b
L .

A7. Covariance of errors inmL with errors inN anddm

The calibration of the AMS signal intensity to aerosol mass is
based upon the SMPS measurements of a monodisperse test
aerosol of homogeneous particles. Specifically, the aerosol
mass of size-classified spherical 350-nm oleic acid particles
(density of 0.895 g·cm−3) is calculated using the measured
N . This aerosol mass is the primary standard for the cali-
bration of the AMS signal intensity to the oleic acid aerosol
mass. Therefore, any systematic errors in the accuracy ofdm

(350 nm) orN (350 nm) lead to covarying systematic errors
in the accuracy of the measured mass. (Once calibrated, the
mass determined via the AMS signal intensities is indepen-
dent of measurements ofdm andN so that random uncertain-
ties do not covary.)

The covariance of %δmL with %δdm and %δN is as fol-
lows:

mL =
(
IMS/I ∗

MS

) (
π
6 N∗

(
d∗
m

)3
)

SMPS
(A2.1)

δmL =
π
6

(
IMS/I ∗

MS

) ((
d∗
m

)3
δN∗

+ 3N∗
(
d∗
m

)2
δd∗

m

)
(A2.2)

δmL

mL

=
δN∗

N∗
+ 3

δd∗
m

d∗
m

(A2.3)

%δmL = 3(%δdm) + %δN, (A2.4)

where IMS is the mass spectral signal intensity, the su-
perscript * designates calibration conditions, and the sub-
scriptSMPSemphasizes the technique employed to calibrate
aerosol mass.

Table 6 shows the net effect of systematic errors indm

andN on the calculated quantities, which are calculated by
using the entries in Table 4 for cases of (1)δdm=+1% and
δmL=+3% and (2)δN=+1% andδmL=+1% where the rela-
tionship ofδmL to δdm andδN is established by Eq. (A2.4).
Notably, Table 6 shows that the effects of a systematic error
in N and of a covarying error inmL cancel. In contrast, the
covariance ofmL has the effect of increasing the error inm̄1a

L

but decreasing it forρ2b
L andρ3b

L for a systematic error indm.
Therefore, the “PSL calibration” correction is also affected,
and the revised values are given in Table 6.

(A comment of caution is necessary in the use of Eq. 2b
to avoid a circular measurement. Namely, if Eq. 2b is ap-
plied to the study of homogeneous oleic acid particles – i.e.,
the calibration particles – then Eq. 2b collapses intoρp=ρp,
and no true measurement is made. Perturbations from the
calibration system, such asdcore>0 or a change in the chem-
ical makeup of the particle through ozone exposure, restore
Eq. 2b as an independent method.)

A8. Conclusions

Our analysis suggests a systematic explanation for several
trends apparent in the data. Notably, regardless of layer

www.atmos-chem-phys.org/acp/5/275/ Atmos. Chem. Phys., 5, 275–291, 2005



290 Y. Katrib et al.: Density changes of aerosol particles

thickness, the particle density of unreacted particles is con-
sistently 1% larger than would be expected based upon ge-
ometric calculation (e.g., 0.944 g·cm−3 measured versus
0.934 g·cm−3 expected). As a result, although oleic acid
has a density of 0.895 g·cm−3, the reported layer density of
unreacted oleic acid decreases from 0.928 to 0.908 g·cm−3

(3.6% to 1.4% too large) as layer thickness increases from
8 to 30 nm (Table 3). Tables 5 and 6 show that layer den-
sity would be reduced if polydispersity and nanomode mass
were accounted for and would be increased if the diameter
and AMS calibrations with nonspherical PSL particles were
considered.

The results shown in Tables 5 and 6 suggest a priority
ranking for improved analysis. The highest priority is to ad-
dress the issue ofdm anddva calibration with the PSL parti-
cles. A further recommendation is to calibrate the AMS by
a method independent of the SMPS measurements, prefer-
ably by a method directly sensitive to aerosol mass (e.g., by
infrared light absorption in the nonscattering size regime).
The next priorities are to distinguish between MMD vs.
CMD when emphasis is placed on thicker coatings or to treat
aerosol polydispersity when emphasis is placed on thinner
coatings.
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