6,334 research outputs found

    The Complexity of Vector Spin Glasses

    Full text link
    We study the annealed complexity of the m-vector spin glasses in the Sherrington-Kirkpatrick limit. The eigenvalue spectrum of the Hessian matrix of the Thouless-Anderson-Palmer (TAP) free energy is found to consist of a continuous band of positive eigenvalues in addition to an isolated eigenvalue and (m-1) null eigenvalues due to rotational invariance. Rather surprisingly, the band does not extend to zero at any finite temperature. The isolated eigenvalue becomes zero in the thermodynamic limit, as in the Ising case (m=1), indicating that the same supersymmetry breaking recently found in Ising spin glasses occurs in vector spin glasses.Comment: 4 pages, 2 figure

    Electric tempest in a teacup: the tea leaf analogy to microfluidic blood plasma separation

    Get PDF
    In a similar fashion to Einstein's tea leaf paradox, the rotational liquid flow induced by ionic wind above a liquid surface can trap suspended microparticles by a helical motion, spinning them down towards a bottom stagnation point. The motion is similar to Batchelor [Q. J. Mech. Appl. Math. 4, 29 (1951)] flows occurring between stationary and rotating disks and arises due to a combination of the primary azimuthal and secondary bulk meridional recirculation that produces a centrifugal and enhanced inward radial force near the chamber bottom. The technology is thus useful for microfluidic particle trapping/concentration; the authors demonstrate its potential for rapid erythrocyte/blood plasma separation for miniaturized medical diagnostic kits

    Ground state energy of qq-state Potts model: the minimum modularity

    Full text link
    A wide range of interacting systems can be described by complex networks. A common feature of such networks is that they consist of several communities or modules, the degree of which may quantified as the \emph{modularity}. However, even a random uncorrelated network, which has no obvious modular structure, has a finite modularity due to the quenched disorder. For this reason, the modularity of a given network is meaningful only when it is compared with that of a randomized network with the same degree distribution. In this context, it is important to calculate the modularity of a random uncorrelated network with an arbitrary degree distribution. The modularity of a random network has been calculated [Phys. Rev. E \textbf{76}, 015102 (2007)]; however, this was limited to the case whereby the network was assumed to have only two communities, and it is evident that the modularity should be calculated in general with q(≥2)q(\geq 2) communities. Here, we calculate the modularity for qq communities by evaluating the ground state energy of the qq-state Potts Hamiltonian, based on replica symmetric solutions assuming that the mean degree is large. We found that the modularity is proportional to ⟨k⟩/⟨k⟩\langle \sqrt{k} \rangle / \langle k \rangle regardless of qq and that only the coefficient depends on qq. In particular, when the degree distribution follows a power law, the modularity is proportional to ⟨k⟩−1/2\langle k \rangle^{-1/2}. Our analytical results are confirmed by comparison with numerical simulations. Therefore, our results can be used as reference values for real-world networks.Comment: 14 pages, 4 figure

    Chevalier Jackson, M.D. (1865-1958): Il ne se repose jamais.

    Get PDF
    In the final year of the American Civil War, 1865, Chevalier Jackson was born on the 4th of November just outside Pittsburgh, Pennsylvania. The eldest of three sons of a poor, livestock-raising family, Jackson was raised in a period of social and political unrest. He was perhaps an even more unrestful boy. The description of his childhood days from his father’s father—Il ne se repose jamais, ‘‘He never rests’’—would ultimately reflect the man, doctor, and evangelist Jackson would later become.1 Indeed, he never did rest, Jackson would tirelessly pave the way for modern bronchoscopy and endoscopy as a whole; bringing international renown not only to himself, but also to his specialty

    Emil Zuckerkandl, M.D. (1849-1910): Bridging Anatomic Study and the Operating Room Table.

    Get PDF
    In the mid-19th century, the Vienna School of Anatomy was at the epicenter of the rapidly growing field of anatomy. One of the school’s most distinguished professors, Hungarian-born anatomist Emil Zuckerkandl was instrumental in transforming anatomy from a descriptive science to one of practical and clinical value. A prolific researcher interested in nearly all areas of morphology and most famously, the chromaffin system, Zuckerkandl’s discoveries from more than a century ago still provide a foundation for surgeons to this day

    T-junction ion trap array for two-dimensional ion shuttling, storage and manipulation

    Get PDF
    We demonstrate a two-dimensional 11-zone ion trap array, where individual laser-cooled atomic ions are stored, separated, shuttled, and swapped. The trap geometry consists of two linear rf ion trap sections that are joined at a 90 degree angle to form a T-shaped structure. We shuttle a single ion around the corners of the T-junction and swap the positions of two crystallized ions using voltage sequences designed to accommodate the nontrivial electrical potential near the junction. Full two-dimensional control of multiple ions demonstrated in this system may be crucial for the realization of scalable ion trap quantum computation and the implementation of quantum networks.Comment: 3 pages, 5 figure

    Non-commutative field theory approach to two-dimensional vortex liquid system

    Full text link
    We investigate the non-commutative (NC) field theory approach to the vortex liquid system restricted to the lowest Landau level (LLL) approximation. NC field theory effectively takes care of the phase space reduction of the LLL physics in a ⋆\star-product form and introduces a new gauge invariant form of a quartic potential of the order parameter in the Ginzburg-Landau (GL) free energy. This new quartic interaction coupling term has a non-trivial equivalence relation with that obtained by Br\'ezin, Nelson and Thiaville in the usual GL framework. The consequence of the equivalence is discussed.Comment: Add vortex lattice formation, more references, and one autho

    William Edwards Ladd, M.D. (1880-1967): the description of his bands.

    Get PDF
    In the early 20th century, an established surgical specialty catering to pediatric surgery did not exist, and pediatric surgical ailments were operated on by general surgeons. With his devotion to childhood diseases and his unique thinking in surgical development, William E. Ladd would become a leading figure in America by pioneering the field of pediatric surgery
    • …
    corecore