We study the annealed complexity of the m-vector spin glasses in the
Sherrington-Kirkpatrick limit. The eigenvalue spectrum of the Hessian matrix of
the Thouless-Anderson-Palmer (TAP) free energy is found to consist of a
continuous band of positive eigenvalues in addition to an isolated eigenvalue
and (m-1) null eigenvalues due to rotational invariance. Rather surprisingly,
the band does not extend to zero at any finite temperature. The isolated
eigenvalue becomes zero in the thermodynamic limit, as in the Ising case (m=1),
indicating that the same supersymmetry breaking recently found in Ising spin
glasses occurs in vector spin glasses.Comment: 4 pages, 2 figure