522 research outputs found
Photonic band gap and x-ray optics in warm dense matter
Photonic band gaps for the soft x-rays, formed in the periodic structures of
solids or dense plasmas, are theoretically investigated. Optical manipulation
mechanisms for the soft x-rays, which are based on these band gaps, are
computationally demonstrated. The reflection and amplification of the soft
x-rays, and the compression and stretching of chirped soft x-ray pulses are
discussed. A scheme for lasing with atoms with two energy levels, utilizing the
band gap, is also studied.Comment: 3 figures, will be published on Po
Suppression of Landau damping via electron band gap
The pondermotive potential in the X-ray Raman compression can generate an
electron band gap which suppresses the Landau damping. The regime is identified
where a Langmuir wave can be driven without damping in the stimulated Raman
compression. It is shown that the partial wave breaking and the frequency
detuning due to the trapped particles would be greatly reduced.Comment: 4 pages, 5 figure
X-ray Raman compression via two-stream instability in dense plasmas
A Raman compression scheme suitable for x-rays, where the Langmuir wave is
created by an intense beam rather than the pondermotive potential between the
seed and pump pulses, is proposed.
The required intensity of the seed and pump pulses enabling the compression
could be mitigated by more than a factor of 100, compared to conventionally
available other Raman compression schemes. The relevant wavelength of x-rays
ranges from 1 to 10 nm
X-ray diffraction from shock-loaded polycrystals
X-ray diffraction was demonstrated from shock-compressed polycrystalline
metal on nanosecond time scales. Laser ablation was used to induce shock waves
in polycrystalline foils of Be, 25 to 125 microns thick. A second laser pulse
was used to generate a plasma x-ray source by irradiation of a Ti foil. The
x-ray source was collimated to produce a beam of controllable diameter, and the
beam was directed at the Be sample. X-rays were diffracted from the sample, and
detected using films and x-ray streak cameras. The diffraction angle was
observed to change with shock pressure. The diffraction angles were consistent
with the uniaxial (elastic) and isotropic (plastic) compressions expected for
the loading conditions used. Polycrystalline diffraction will be used to
measure the response of the crystal lattice to high shock pressures and through
phase changes
Numerical simulations of compressible Rayleigh-Taylor turbulence in stratified fluids
We present results from numerical simulations of Rayleigh-Taylor turbulence,
performed using a recently proposed lattice Boltzmann method able to describe
consistently a thermal compressible flow subject to an external forcing. The
method allowed us to study the system both in the nearly-Boussinesq and
strongly compressible regimes. Moreover, we show that when the stratification
is important, the presence of the adiabatic gradient causes the arrest of the
mixing process.Comment: 15 pages, 11 figures. Proceedings of II Conference on Turbulent
Mixing and Beyond (TMB-2009
Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion
Index
The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, the basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell–Jüttner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.Original Publication: Antoine Bret, Laurent Gremillet and Mark Eric Dieckmann, Multidimensional electron beam-plasma instabilities in the relativistic regime, 2010, Physics of Plasmas, (17), 12, 120501-1-120501-36. http://dx.doi.org/10.1063/1.3514586 Copyright: American Institute of Physics http://www.aip.org/</p
Mass-radius relationships for exoplanets
For planets other than Earth, interpretation of the composition and structure
depends largely on comparing the mass and radius with the composition expected
given their distance from the parent star. The composition implies a
mass-radius relation which relies heavily on equations of state calculated from
electronic structure theory and measured experimentally on Earth. We lay out a
method for deriving and testing equations of state, and deduce mass-radius and
mass-pressure relations for key materials whose equation of state is reasonably
well established, and for differentiated Fe/rock. We find that variations in
the equation of state, such as may arise when extrapolating from low pressure
data, can have significant effects on predicted mass- radius relations, and on
planetary pressure profiles. The relations are compared with the observed
masses and radii of planets and exoplanets. Kepler-10b is apparently 'Earth-
like,' likely with a proportionately larger core than Earth's, nominally 2/3 of
the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an
Fe-based core which is likely to be proportionately smaller than Earth's. GJ
1214b lies between the mass-radius curves for H2O and CH4, suggesting an 'icy'
composition with a relatively large core or a relatively large proportion of
H2O. CoRoT-2b is less dense than the hydrogen relation, which could be
explained by an anomalously high degree of heating or by higher than assumed
atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation
for hydrogen, suggesting the presence of a significant amount of matter of
higher atomic number. CoRoT-3b lies close to the hydrogen relation. The
pressure at the center of Kepler-10b is 1.5+1.2-1.0 TPa. The central pressure
in CoRoT-7b is probably close to 0.8TPa, though may be up to 2TPa.Comment: Added more recent exoplanets. Tidied text and references. Added extra
"rock" compositions. Responded to referee comment
Hydrogen-Helium Mixtures at High Pressure
The properties of hydrogen-helium mixtures at high pressure are crucial to
address important questions about the interior of Giant planets e.g. whether
Jupiter has a rocky core and did it emerge via core accretion? Using path
integral Monte Carlo simulations, we study the properties of these mixtures as
a function of temperature, density and composition. The equation of state is
calculated and compared to chemical models. We probe the accuracy of the ideal
mixing approximation commonly used in such models. Finally, we discuss the
structure of the liquid in terms of pair correlation functions.Comment: Proceedings article of the 5th Conference on Cryocrystals and Quantum
Crystals in Wroclaw, Poland, submitted to J. Low. Temp. Phys. (2004
- …
