12,890 research outputs found
Cryogenic Propellant Scavenging
A detailed description of a computer model that has been developed for assessing the feasibility of low g cryogen propellant scavenging from the space shuttle External Tank (ET) is given. Either pump-assisted or pressure-induced propellant transfer may be selected. The program will accept a wide range of input variables, including the fuel to be transferred (LOX or LH2), heat leaks, tank temperatures, and piping and equipment specifications. The model has been parametrically analyzed to determine initial design specification for the system
The optical polarization of Epsilon Aurigae through the 1982-84 eclipse
About 350 nights observations on the 61-cm telescope at Pine Mt. Observatory were made of the variable polarization of Eps. Aurigae during 1982-85, in the U, B, and V color bands. The V data are the most complete and are shown. In terms of the overall features the curves in all three colors are quite similar. The typical errors per nightly point in the V curves are about 0.015% for either of the two normalized, equatorial Stokes parameters Q and U. Note that there is a large background or constant component of some 2.5%, position angle around 135 deg. This is presumably largely interstellar, and the intrinsic polarization probably does not much exceed the amplitude of the variable component, approx. 0.5%. A few field-star polarizations were measured but a very clear pattern was not obtained in this part of the sky
Beyond recurrent costs: an institutional analysis of the unsustainability of donor-supported reforms in agricultural extension
International donors have spent billions of dollars over the past four decades in developing and/or reforming the agricultural extension service delivery arrangements in developing countries. However, many of these reforms, supported through short-term projects, became unsustainable once aid funding had ceased. The unavailability of recurrent funding has predominantly been highlighted in the literature as the key reason for this undesirable outcome, while little has been written about institutional factors. The purpose of this article is to examine the usefulness of taking an institutional perspective in explaining the unsustainability of donor-supported extension reforms and derive lessons for improvement. Using a framework drawn from the school of institutionalism in a Bangladeshi case study, we have found that a reform becomes unsustainable because of poor demands for extension information and advice; missing, weak, incongruent, and perverse institutional frameworks governing the exchange of extension goods (services); and a lack of institutional learning and change during the reform process. Accordingly, we have argued that strategies for sustainable extension reforms should move beyond financial considerations and include such measures as making extension goods (services) more tangible and monetary in nature, commissioning in-depth studies to learn about local institutions, crafting new institutions and/or reforming the weak and perverse institutions prevailing in developing countries. We emphasize the need to address three categories of institutions – regulative, normative, and cultural-cognitive – and call for an alignment among them. We further argue that, in order to be sustainable, a reform should take a systemic approach in institutional capacity building and, for this to be possible, adopt a long-term program approach, as opposed to a short-term project approach
Temporal responses of coastal hypoxia to nutrient loading and physical controls
The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Worldwide, there is strong interest in reducing the size and duration of hypoxia in coastal waters, because hypoxia causes negative effects for many organisms and ecosystem processes. Although strategies to reduce hypoxia by decreasing nutrient loading are predicated on the assumption that this action would reverse eutrophication, recent analyses of historical data from European and North American coastal systems suggest little evidence for simple linear response trajectories. We review published parallel time-series data on hypoxia and loading rates for inorganic nutrients and labile organic matter to analyze trajectories of oxygen (O<sub>2</sub>) response to nutrient loading. We also assess existing knowledge of physical and ecological factors regulating O<sub>2</sub> in coastal marine waters to facilitate analysis of hypoxia responses to reductions in nutrient (and/or organic matter) inputs. Of the 24 systems identified where concurrent time series of loading and O<sub>2</sub> were available, half displayed relatively clear and direct recoveries following remediation. We explored in detail 5 well-studied systems that have exhibited complex, non-linear responses to variations in loading, including apparent "regime shifts". A summary of these analyses suggests that O<sub>2</sub> conditions improved rapidly and linearly in systems where remediation focused on organic inputs from sewage treatment plants, which were the primary drivers of hypoxia. In larger more open systems where diffuse nutrient loads are more important in fueling O<sub>2</sub> depletion and where climatic influences are pronounced, responses to remediation tended to follow non-linear trends that may include hysteresis and time-lags. Improved understanding of hypoxia remediation requires that future studies use comparative approaches and consider multiple regulating factors. These analyses should consider: (1) the dominant temporal scales of the hypoxia, (2) the relative contributions of inorganic and organic nutrients, (3) the influence of shifts in climatic and oceanographic processes, and (4) the roles of feedback interactions whereby O<sub>2</sub>-sensitive biogeochemistry, trophic interactions, and habitat conditions influence the nutrient and algal dynamics that regulate O<sub>2</sub> levels
Augmented reality environmental monitoring using wireless sensor networks
Environmental monitoring brings many challenges to wireless sensor networks: including the need to collect and process large volumes of data before presenting the information to the user in an easy to understand format. This paper presents SensAR, a prototype augmented reality interface specifically designed for monitoring environmental information. The input of our prototype is sound and temperature data which are located inside a networked environment. Participants can visualise 3D as well as textual representations of environmental information in real-time using a lightweight handheld computer
Optical Manipulation of Light Scattering in Cold Atomic Rubidium
A brief perspective on light scattering in dense and cold atomic rubidium is
presented. We particularly focus on the influence of auxiliary applied fields
on the system response to a weak and nearly resonant probe field. Auxiliary
fields can strongly disturb light propagation; in addition to the steady state
case, dynamically interesting effects appear clearly in both the time domain,
and in the optical polarization dependence of the processes. Following a
general introduction, two examples of features found in such studies are
presented. These include nonlinear optical effects in (a) comparative studies
of forward- and fluorescence-configuration scattering under combined excitation
of a control and probe field, and (b) manipulation of the spatial structure of
the optical response due to a light shifting strong applied field
- …
