1,177 research outputs found

    The Dynamics of Radio Galaxies and Double-Double Radio Galaxies

    Full text link
    Relativistic and magnetised plasma ejected by radio loud AGNs through jets form the diffuse lobes of radio galaxies. The radiating particles (electron/electron-positron) in lobes emit in radio via the synchrotron process and X-ray via inverse-Compton scattering of cosmic microwave background photons. The thermal environment around radio galaxies emits X-rays via the thermal bremsstrahlung process. By combining information from these processes we can measure physical conditions in and around the radio lobes and thus study the dynamics of radio galaxies, including double-double radio galaxies.Comment: 11 pages, 4 figures, Diffuse Radio Plasma Conference proceedings (held in Raman Research Institute, Bangalore, India

    The dynamics and environmental impact of 3C452

    Get PDF
    We present a detailed analysis of a new XMM-Newton observation of the FRII radio galaxy 3C452 and its environment. We detect X-ray emission from the hot intragroup medium and measure its temperature as well as obtaining the surface brightness and pressure profiles. We provide evidence that 3C452 is currently heating its environment, measuring a temperature of 1.18±0.111.18\pm0.11 keV for the immediate environment of the radio source compared to 0.860.05+0.130.86^{+0.13}_{-0.05} keV for the outer environment. We also present evidence that the outer regions of the lobes are overpressured (internal pressure of 2.6×10132.6\times10^{-13} Pa and external pressure of 1.11±0.11×10131.11\pm{0.11}\times10^{-13} Pa at the edge of the lobes) and therefore are driving a shock at the lobe edges (with a temperature which we constrain to be 1.70.5+0.91.7^{+0.9}_{-0.5} keV), while the inner regions of the lobes are underpressured and contracting. Taking into account the very large amount of energy stored in the lobes, we show that this relatively low-powered FRII radio galaxy will have an extremely significant impact on its group environment.Comment: 10 pages, 6 figures (4 in colour). Accepted by MNRA

    Brightest Cluster Galaxies and Core Gas Density in REXCESS Clusters

    Full text link
    We investigate the relationship between brightest cluster galaxies (BCGs) and their host clusters using a sample of nearby galaxy clusters from the Representative XMM Cluster Structure Survey (REXCESS). The sample was imaged with the Southern Observatory for Astrophysical Research (SOAR) in R band to investigate the mass of the old stellar population. Using a metric radius of 12h^-1 kpc, we found that the BCG luminosity depends weakly on overall cluster mass as L_BCG \propto M_cl^0.18+-0.07, consistent with previous work. We found that 90% of the BCGs are located within 0.035 r_500 of the peak of the X-ray emission, including all of the cool core (CC) clusters. We also found an unexpected correlation between the BCG metric luminosity and the core gas density for non-cool core (non-CC) clusters, following a power law of n_e \propto L_BCG^2.7+-0.4 (where n_e is measured at 0.008 r_500). The correlation is not easily explained by star formation (which is weak in non-CC clusters) or overall cluster mass (which is not correlated with core gas density). The trend persists even when the BCG is not located near the peak of the X-ray emission, so proximity is not necessary. We suggest that, for non-CC clusters, this correlation implies that the same process that sets the central entropy of the cluster gas also determines the central stellar density of the BCG, and that this underlying physical process is likely to be mergers.Comment: 16 pages, 8 figures, accepted Astrophysical Journa

    Shocks, Seyferts and the SNR connection: a Chandra observation of the Circinus galaxy

    Get PDF
    We analyse new Chandra observations of the nearest (D=4 Mpc) Seyfert 2 active galaxy, Circinus, and match them to pre-existing radio, infrared and optical data to study the kpc-scale emission. The proximity of Circinus allows us to observe in striking detail the structure of the radio lobes, revealing for the first time edge-brightened emission both in X-rays and radio. After considering various other possible scenarios, we show that this extended emission in Circinus is most likely caused by a jet-driven outflow, which is driving shells of strongly shocked gas into the halo of the host galaxy. In this context, we estimate Mach numbers M=2.7-3.6 and M=2.8-5.3 for the W and E shells respectively. We derive temperatures of 0.74 (+0.06, -0.05) keV and 0.8-1.8 keV for the W and E shells, and an expansion velocity of ~900-950 km/s. We estimate that the total energy (thermal and kinetic) involved in creating both shells is ~2x10^55 erg, and their age is ~10^6 years. Comparing these results with those we previously obtained for Centaurus A, NGC 3801 and Mrk 6, we show that these parameters scale approximately with the radio power of the parent AGN. The spatial coincidence between the X-ray and edge-brightened radio emission in Circinus resembles the morphology of some SNR shocks. This parallel has been expected for AGN, but has never been observed before. We investigate what underlying mechanisms both types of systems may have in common, arguing that, in Circinus, the edge-brightening in the shells may be accounted for by a B field enhancement caused by shock compression, but do not preclude some local particle acceleration. These results can be extrapolated to other low-power systems, particularly those with late type hosts.Comment: 13 pages, 9 figures, and 5 tables. Accepted for publication in Ap

    A Flare in the Jet of Pictor A

    Get PDF
    A Chandra X-ray imaging observation of the jet in Pictor A showed a feature that appears to be a flare that faded between 2000 and 2002. The feature was not detected in a follow-up observation in 2009. The jet itself is over 150 kpc long and a kpc wide, so finding year-long variability is surprising. Assuming a synchrotron origin of the observed high-energy photons and a minimum energy condition for the outflow, the synchrotron loss time of the X-ray emitting electrons is of order 1200 yr, which is much longer than the observed variability timescale. This leads to the possibility that the variable X-ray emission arises from a very small sub-volume of the jet, characterized by magnetic field that is substantially larger than the average over the jet.Comment: 12 pages, 3 figures, to appear in Ap. J. Letter

    An X-ray study of magnetic field strengths and particle content in FRII radio sources

    Full text link
    We present a Chandra and XMM-Newton study of X-ray emission from the lobes of 33 classical double radio galaxies and quasars. We report new detections of lobe-related X-ray emission in 11 sources. Together with previous detections we find that X-ray emission is detected from at least one radio lobe in ~75 percent of the sample. For all of the lobe detections, we find that the measured X-ray flux can be attributed to inverse-Compton scattering of the cosmic microwave background radiation, with magnetic field strengths in the lobes between (0.3 - 1.3) B_eq, where the value B_eq corresponds to equipartition between the electrons and magnetic field assuming a filling factor of unity. There is a strong peak in the magnetic field strength distribution at B ~ 0.7 B_eq. We find that > 70 percent of the radio lobes are either at equipartition or electron dominated by a small factor. The distribution of measured magnetic field strengths differs for narrow-line and broad-line objects, in the sense that broad-line radio galaxies and quasars appear to be further from equipartition; however, this is likely to be due to a combination of projection effects and worse systematic uncertainty in the X-ray analysis for those objects. Our results suggest that the lobes of classical double radio sources do not contain an energetically dominant proton population, because this would require the magnetic field energy density to be similar to the electron energy density rather than the overall energy density in relativistic particles.Comment: 44 pages, 4 figures. Accepted for publication in Ap

    Large Kinetic Power in FRII Radio Jets

    Full text link
    We investigate the total kinetic powers (L_{j}) and ages (t_{age}) of powerful jets of four FR II radio sources (Cygnus A, 3C 223, 3C 284, and 3C 219) by the detail comparison of the dynamical model of expanding cocoons with observed ones. It is found that these sources have quite large kinetic powers with the ratio of L_{j} to the Eddington luminosity (L_{Edd}) resides in 0.02<Lj/LEdd<100.02 <L_{j}/L_{Edd} <10. Reflecting the large kinetic powers, we also find that the total energy stored in the cocoon (E_{c}) exceed the energy derived from the minimum energy condition (E_{min}): 2<Ec/Emin<1602< E_{c}/E_{min} <160. This implies that a large amount of kinetic power is carried by invisible components such as thermal leptons (electron and positron) and/or protons.Comment: 5 pages, accepted for publication in Astrophysics and Space Scienc

    Detection of non-thermal X-ray emission in the lobes and jets of Cygnus A

    Get PDF
    This article has been published in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. 21 pages, 8 figuresWe present a spectral analysis of the lobes and X-ray jets of Cygnus A, using more than 2 Ms of Chandra\textit{Chandra} observations. The X-ray jets are misaligned with the radio jets and significantly wider. We detect non-thermal emission components in both lobes and jets. For the eastern lobe and jet, we find 1 keV flux densities of 7110+1071_{-10}^{+10} nJy and 244+424_{-4}^{+4} nJy, and photon indices of 1.720.03+0.031.72_{-0.03}^{+0.03} and 1.640.04+0.041.64_{-0.04}^{+0.04} respectively. For the western lobe and jet, we find flux densities of 5013+1250_{-13}^{+12} nJy and 135+513_{-5}^{+5} nJy, and photon indices of 1.970.10+0.231.97_{-0.10}^{+0.23} and 1.860.12+0.181.86_{-0.12}^{+0.18} respectively. Using these results, we modeled the electron energy distributions of the lobes as broken power laws with age breaks. We find that a significant population of non-radiating particles is required to account for the total pressure of the eastern lobe. In the western lobe, no such population is required and the low energy cutoff to the electron distribution there needs to be raised to obtain pressures consistent with observations. This discrepancy is a consequence of the differing X-ray photon indices, which may indicate that the turnover in the inverse-Compton spectrum of the western lobe is at lower energies than in the eastern lobe. We modeled the emission from both jets as inverse-Compton emission. There is a narrow region of parameter space for which the X-ray jet can be a relic of an earlier active phase, although lack of knowledge about the jet's electron distribution and particle content makes the modelling uncertain.Peer reviewedFinal Published versio
    corecore