5,877 research outputs found

    Quantization and simulation of Born-Infeld non-linear electrodynamics on a lattice

    Full text link
    Born-Infeld non-linear electrodynamics arises naturally as a field theory description of the dynamics of strings and branes. Most analyses of this theory have been limited to studying it as a classical field theory. We quantize this theory on a Euclidean 4-dimensional space-time lattice and determine its properties using Monte-Carlo simulations. The electromagnetic field around a static point charge is measured using Luscher-Weisz methods to overcome the sign problem associated with the introduction of this charge. The D field appears identical to that of Maxwell QED. However, the E field is enhanced by quantum fluctuations, while still showing the short distance screening observed in the classical theory. In addition, whereas for the classical theory, the screening increases without bound as the non-linearity increases, the quantum theory approaches a limiting conformal field theory.Comment: 24 pages, 10 figures. Latex with postscript figure

    New Perspective on the Optical Theorem of Classical Electrodynamics

    Full text link
    A general proof of the optical theorem (also known as the optical cross-section theorem) is presented that reveals the intimate connection between the forward scattering amplitude and the absorption-plus-scattering of the incident wave within the scatterer. The oscillating electric charges and currents as well as the electric and magnetic dipoles of the scatterer, driven by an incident plane-wave, extract energy from the incident beam at a certain rate. The same oscillators radiate electro-magnetic energy into the far field, thus giving rise to well-defined scattering amplitudes along various directions. The essence of the proof presented here is that the extinction cross-section of an object can be related to its forward scattering amplitude using the induced oscillations within the object but without an actual knowledge of the mathematical form assumed by these oscillations.Comment: 7 pages, 1 figure, 12 reference

    Nonperturbative calculation of Born-Infeld effects on the Schroedinger spectrum of the hydrogen atom

    Full text link
    We present the first nonperturbative numerical calculations of the nonrelativistic hydrogen spectrum as predicted by first-quantized electrodynamics with nonlinear Maxwell-Born-Infeld field equations. We also show rigorous upper and lower bounds on the ground state. When judged against empirical data our results significantly restrict the range of viable values of the new electromagnetic constant which is introduced by the Born-Infeld theory. We assess Born's own proposal for the value of his constant.Comment: 4p., 2 figs, 1 table; submitted for publicatio

    A technique for optimal temperature estimation for modeling sunrise/sunset thermal snap disturbance torque

    Get PDF
    A predictive temperature estimation technique which can be used to drive a model of the Sunrise/Sunset thermal 'snap' disturbance torque experienced by low Earth orbiting spacecraft is described. The twice per orbit impulsive disturbance torque is attributed to vehicle passage in and out of the Earth's shadow cone (umbra), during which large flexible appendages undergo rapidly changing thermal conditions. Flexible members, in particular solar arrays, experience rapid cooling during umbra entrance (Sunset) and rapid heating during exit (Sunrise). The thermal 'snap' phenomena has been observed during normal on-orbit operations of both the LANDSAT-4 satellite and the Communications Technology Satellite (CTS). Thermal 'snap' has also been predicted to be a dominant source of error for the TOPEX satellite. The fundamental equations used to model the Sunrise/Sunset thermal 'snap' disturbance torque for a typical solar array like structure will be described. For this derivation the array is assumed to be a thin, cantilevered beam. The time varying thermal gradient is shown to be the driving force behind predicting the thermal 'snap' disturbance torque and therefore motivates the need for accurate estimates of temperature. The development of a technique to optimally estimate appendage surface temperature is highlighted. The objective analysis method used is structured on the Gauss-Markov Theorem and provides an optimal temperature estimate at a prescribed location given data from a distributed thermal sensor network. The optimally estimated surface temperatures could then be used to compute the thermal gradient across the body. The estimation technique is demonstrated using a typical satellite solar array

    Perfect imaging with positive refraction in three dimensions

    Get PDF
    Maxwell's fish eye has been known to be a perfect lens within the validity range of ray optics since 1854. Solving Maxwell's equations we show that the fish-eye lens in three dimensions has unlimited resolution for electromagnetic waves

    Feasibility of loophole-free nonlocality tests with a single photon

    Full text link
    Recently much interest has been directed towards designing setups that achieve realistic loss thresholds for decisive tests of local realism, in particular in the optical regime. We analyse the feasibility of such Bell tests based on a W-state shared between multiple parties, which can be realised for example by a single photon shared between spatial modes. We develop a general error model to obtain thresholds on the efficiencies required to violate local realism, and also consider two concrete optical measurement schemes.Comment: 8 pages, 5 figure

    Geometrical dynamics of Born-Infeld objects

    Get PDF
    We present a geometrical inspired study of the dynamics of DpDp-branes. We focus on the usual nonpolynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1D1-brane immersed in a AdS3×S3AdS_3 \times S^3 background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation.Comment: LaTex, 20 pages, no figure

    Polarized thermal emission by thin metal wires

    Full text link
    We report new measurements of the linear polarization of thermal radiation emitted by incandescent thin tungsten wires, with thicknesses ranging from five to hundred microns. Our data show very good agreement with theoretical predictions, based on Drude-type fits to measured optical properties of tungsten.Comment: 12 pages, 4 encapsulated figures. This new version matches the one published in New. J. Phys.. Improved presentation, more references added, and one new figure include

    Ghost Interference with Optical Parametric Amplifier

    Full text link
    The 'Ghost' interference experiment is analyzed when the source of entangled photons is a multimode Optical Parametric Amplifier(OPA) whose weak limit is the two-photon Spontaneous Parametric Downconversion(SPDC) beam. The visibility of the double-slit pattern is calculated, taking the finite coincidence time window of the photon counting detectors into account. It is found that the coincidence window and the bandwidth of light reaching the detectors play a crucial role in the loss of visibility on coincidence detection, not only in the 'Ghost' interference experiment but in all experiments involving coincidence detection. The differences between the loss of visibility with two-mode and multimode OPA sources is also discussed. PACS: 42.65.Yj, 42.50.Dv, 42.65.L

    Novel methods to measure the gravitational constant in space

    Get PDF
    We present two novel methods, tested by LISA Pathfinder, to measure the gravitational constant G for the first time in space. Experiment 1 uses electrostatic suspension forces to measure a change in acceleration of a test mass due to a displaced source mass. Experiment 2 measures a change in relative acceleration between two test masses due to a slowly varying fuel tank mass. Experiment 1 gave a value of G=6.71±0.42(×10-11)¿¿m3¿s-2¿kg-1 and experiment 2 gave 6.15±0.35(×10-11)¿¿m3¿s-2¿kg-1, both consistent with each other to 1s and with the CODATA 2014 recommended value of 6.67408±0.00031(×10-11)¿¿m3¿s-2¿kg-1 to 2s. We outline several ideas to improve the results for a future experiment, and we suggest that a measurement in space would isolate many terrestrial issues that could be responsible for the inconsistencies between recent measurements.Peer ReviewedPostprint (published version
    • …
    corecore