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ABSTRACT

This paper describes a predictive temperature estimation technique which can be used to

drive a model of the Sunrise/Sunset thermal "snap" disturbance torque experienced by low

Earth orbiting spacecraft. The twice per orbit impulsive disturbance torque is attributed to

vehicle passage in and out of the Earth's shadow cone (umbra), during which, large flexible

appendages undergo rapidly changing thermal conditions. Flexible members, in particular

solar arrays, experience rapid cooling during umbra entrance (Sunset) and rapid heating

during exit (Sunrise). The thermal "snap" phenomena has been observed during normal

on-orbit operations of both the LANDSAT-4 satellite and the Communications Technology

Satellite (CTS}. Thermal "snap" has also been predicted to be a dominant source of error

for the TOPE)( satellite.

The fundamental equations used to model the Sunrise/Sunset thermal "snap" disturbance

torque for a typical solar array like structure will be described. For this derivation the array

is assumed to be a thin, cantilevered beam. The time varying thermal gradient is shown to

be the driving force behind predicting the thermal "snap" disturbance torque and therefore

motivates the need for accurate estimates of temperature. This paper will highlight the

development of a technique to optimally estimate appendage surface temperatures. The

objective analysis method used is structured on the Gauss-Markov Theorem and provides

an optimal temperature estimate at a prescribed location given data from a distributed

thermal sensor network. The optimally estimated surface temperatures could then be used

to compute the thermal gradient across the body. The estimation technique is demonstrated

using a typical satellite solar array.
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INTRODUCTION

In the early 1980's, an unexpected perturbation was experienced by the LANDSAT-4 and

5 satellites. An anomously large, twice per orbit disturbance was observed in the flight

data during normal on-orbit operations. An example of this disturbance is illustrated in

Figures 1 and 2 which show the LANDSAT-4 roll and yaw axes derived rate telemetry

data, respectively, over one orbital period. An inspection of Figures 1 and 2 reveals that

the roll and yaw controlled response of the vehicle exhibits an impulsive velocity in one

direction immediately followed by a similar motion in the opposite direction, and finally

proceeded by a decaying step of the initial sign. There is minimal coupling present in the

pitch axis data which indicates the disturbance is primarily distributed between the roll

and yaw axes. The perturbation shown in Figures 1 and 2 has been correlated with the

spacecraft's entrance (sunset) and exit (sunrise) to the eclipsed region of the orbit plane.

During penumbral transitions, the vehicle undergoes rapidly changing thermal conditions

which result in a thermally induced bending motion of the large single solar array. If

the snaping or bending motion occurs at a non-constant rate a disturbance torque is

generated about the hinged axis of the array, which is then transferred back onto the vehicle

core-body. This concept is illustrated in Figure 3. This thermally induced disturbance,

referred to as Thermal "snap" or Thermal Elastic Shock (TES), has also been observed

during the three-axis stabilized operation of the Communications Technology Satellite

(CTS), but to a much lesser degree. The difference in perturbation magnitude was a

result of the differences between the two spacecraft designs. The TES disturbance is most

pronounced for asymmetric satellite configurations, such as the single-wing LANDSAT

vehicles. Satellites possesing a dual-wing array design, such as CTS, are significantly less

affected by TES since the motion of both arrays tends to be self-compensating. However,

a single array configuration is typically required to provide an unobstructed radiator view

of cold space for proper thermal control of mission sensor payload instruments.

The significant attitude excursions experienced by the LANDSAT vehicles in response to

the TES disturbance have aroused considerable concern for future satellite missions. This

is especially true for the Upper Atmospheric Research Satellite (UARS) and the TOPog-

raphy EXperiment (TOPEX) satellite since both vehicles utilize LANDSAT heritage. In

particular, the TES disturbance has been predicted to be a dominant source of attitude

perturbation for the TOPEX spacecraft [Dennehy et al., 1988]. Dennehy et al. [1990] have

analyzed the attitude pointing performance of the TOPEX spacecraft when subjected to

the TES disturbance. Their analysis found that the TES disturbance was large enough

to cause the TOPEX spacecraft to temporarily exceed its Normal Mission Mode (NMM)

attitude pointing requirements. Consequently, some degraded performance of the primary

scientific instrument will be experienced for a brief period of time. Thus, for TOPEX and

other future satellites, a need is established to determine the on-orbit magnitude of the TES

disturbance in order to compensate science data taken during degraded attitude periods.

Temperature data could be used in one of two ways to counteract the TES disturbance.

The first methodology would utilize the temperature data in an on-board implementation

to provide adjustments in order to accommodate the TES disturbance torque. The second

procedure would employ the use of temperature telemetry data to drive a TES disturbance

model so a postori attitude reconstruction could be performed on the ground.
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TES DISTURBANCE MODEL

A mathematical representation for the TES disturbance torque for a typical satellite solar

array has been developed by Dennehy et al. [1990]. This model is essentially the second

time derivative of the array inertia multiplied by the angle through which the array bends.

For the TES disturbance model, the solar array is assumed to be a thin, cantilevered beam

with mass M and length L. The general form of the disturbance torque is expressed as

[Dennehy et al., 1990]:

T b = 2](t- r)d(t- v) + f(t- v)u(t- v) (1)

where u(t - r) is a unit step function defined as:

{ 0 if t < r (2)u(t T)
1 ift_>r

and fi(t - T) is a Dirac function described as:

1 ift=r_(t- v) = 0 otherwise (3)

If the array is broken into n pieces, where n is sufficiently large, then a general expression

for the function f(t - r) can be formulated as:

f(t- r) = i>-_1[_(1---n=limi d cos[lia¢_AT])]_ (4)

where

d = thickness of the array

r = point of umbra entrance or exit

AT = thermal gradient across the array

c_¢te -= material coefficient of thermal expansion

The parameters li and mi are determined using the following relations:

li = L (i- 15) (5)

M
m, = -- (6)

n

Substituting Equations 2, 3 and 4 into Equation 1 yields a standard expression for the

TES disturbance torque:

where

0 ift<v

T b = T¢ + _Ht_AT -- 2_'THhAT

+ _n= 1 Z_,,_,,_,_,_al"_dATCOS[_] if t _> r

(7)
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2Hb ift=rT¢ = (8)
0 ift>T

and Hb is the array momentum given as:

0 ift<r

v'n _(1 COS [/'a':teAT ]Hb = _i = l --_,,,_aT2 ' -- t _ J (9)

_ ___aT sin[,_._.__aT]) if t _> r

It is apparent from Equations 7, 8 and 9 that the TES disturbance torque is a function

of not only the thermal gradient across the array, but is also dependent on the first and

second time derivatives of the thermal gradient, _'T and _'T. Thus in order to predict the

magnitude of the TES disturbance using the mathematical model, an array temperature

gradient profile is necessary.

OPTIMAL TEMPERATURE ESTIMATION

The dependence of the TES disturbance torque model on the successive derivatives of

the thermal gradient motivates the need for accurate temperature determination. The

thermal response of a solar array may be predicted using numerical techniques such as

those presented in Dennehy et al. [1990]. Such methods include using the Thermal Ra-

diation Analysis SYStem (TRASYS) and the Systems Improved Numerical Differencing

Analyzer (SINDA) software packages, as well as solving the one-dimensional heat equation

TORQUE
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Figure 3: ¢_!_. A..... o ....... ,..... _La_, ou_uc_ura, Deflection Due to Applied Thermal Gradient
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using finite differenceapproximations. However, to measure the true thermal response
of a solar array, thermal sensorsare used during on-orbit spacecraft operation. Thermal
sensorsutilized for spaceflight applications include thermisters and platinum resistance
thermometers (PRT). Thermisters are accurate to about -t-4°C while the accuracy of a
PRT is approximately ±I°C. If a distributed network of thermal sensorsexists on each
surface of the array, as illustrated in Figure 4 for the front panel, a measurementof the
surface temperaturesat thoseprescribed locations is obtained. It would be nice to useall
the available surface temperature information to estimate the array surface temperature
at a desired location. Thus a technique,basedon the Gauss-MarkovTheorem, is described
to optimally estimate array surface temperatures. Then once the temperature estimate
for each surfaceis determined, the thermal gradient may be predicted by differencing the
front and backsurface temperatures at a consistant specified location.

_- 762.0 cm

s 7

_-_r POINT

l
0

b0
0

S

1
© - THERMAL

SENSOR

Figure 4: 9-Element Distributed Thermal Sensor Network on a Typical Solar Array (Front Surface)

The Gauss-Markov theorem provides a linear minimum mean square estimate of a vector

x with n components given a set of m observations, O. The estimator, given by Liebelt

[1967], is stated as follows:

i: = C=eCelO (10)

where

C,+ = E(xe r) (n x m matrix)

Co = E(OO r) (mx m matrix)
E - expected value operator

The error matrix associated with the estimate of x is given as [Liebelt, 1967]:

-1 T
Ce = C= -- C=oCo C=o
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with

C_ =- E(xx T) (n × n matrix)

If the expected value of the estimate, E(_:), is equal to x (i.e. the average of the estimate

is equal to the true value) then _ is a linear minimum variance unbiased estimate and Ce

is the covariance matrix of the estimate. The error gives a indication of how the estimate

is dispersed from the true value. If the error is small then the estimate approaches the
true value.

Equations 10 and 11 form the basis of the optimal estimation method developed by

Bretherton et al. [1976]. For their analysis, the Gauss-Markov theorem was utilized to

estimate the value of a two-dimensional scaler variable at a specified location given mea-

surement data at a limited number of positions. A linear form of the observations is

assumed and can be expressed as:

Pi = O(r,s) + ei (12)

for i = 1, ..., N where

_oi - i th measurement

ei _ i tn measurement error

N - total number of observations

O(r,s) --- scaler variable at position (r,s)

Furthermore, the assumption is made that the measurement errors are uncorrelated and

independent of _. Under these assumptions, Bretherton et al. [1976] applied the Gauss-

Markov theorem, Equations 10 and 11, to obtain the resulting estimation equation given
as follows:

N N

= 0 + _ C_,[_ A_.I(_j - _))] (13)
i=1 j=l

where

_) _= estimated mean of the observations

Aiy =- covariance between all pairs of observations

C_i =- covariance between the estimate and the i th observation

and the associated error matrix, Ce given as:

N N

C, = C, - _ _ C,,C,iAi-j.; (14)
i=1 j=l

The estimated mean is computed under the condition that the sum of the weighted mea-

surements is zero and is determined by the following equation [Bretherton et al., 1976]:
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6 = E,_, EjNI A_l_3 " (15)

Equations 13, 14 and 15 will be used to provide an optimal estimate of a solar array

temperature at a prescribed location and the error associated with the estimate in order

to demonstrate the estimation technique.

APPLICATION

The key to implementing the optimal estimation technique is the determination of both

the C, matrix and an analytic weighting function to scale the variance of the data. The

weighting function is necessary to compute numerical values for the C.i and Aij matrices.

The C. matrix is generally unknown but can be approximated by the variance of the given

data set. The numerical computation of C, for this analysis was performed using the

following equation [Bretherton et al., 1976]:

(1 N N-- Ei=l Ej=I CziA_'l) _
+ (16)Cz ---- (:r N N

_i=1 _3"----1 A_)

where a_ is the standard deviation of the measurement data given as:

l/EN1 !(Pi -_ _)2

av=v N-1

with

(17)

N

The last term on the right hand side of Equation 16 accounts for uncertainties associated

with the estimated mean.

A weighting function was selected, for this study, to weight the measurements according

to their spatial location with respect to one another and to the desired position of the

estimate. This type of weighting function can be used as a first cut statistical model given

no a priori knowledge of the data statistics. The estimation technique can, however, easily

accommodate more complex statistical models if desired. An analytical expression for the

weighting function is given as:

-2
Wij = 0.2("/- rij - sTj2) exp -_2+s:/2 (19)

where

_/ - measurement degradation factor

rT0 - scaling parameter between the i th

and jth observations in the r direction

s_j =- scaling parameter between the i th

and jth observations in the s direction

The parameter "7 is introduced to change the quality of the observations. If "y is set equal

to 5.0 then a maximum correlation of 1.0 will exist when the condition i = j is satisfied in
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Equation 19. As 3, linearly decreases, the maximum attainable correlation also decreases

in a linear fashion. The scaling parameters, rTj. and s_j, are calculated using the following
equations:

and

_ ri - rj
r,i - (20)

rscale

_i -- sj
s_j -- (21)

8scale

The variables rs¢_t_ and ss_t_ can be specified to determine an effective range of data in-

fluence (decorrelation scale) or set to the dimensions of the spatial area over which the

measurements are confined. For the present study, the latter condition is used. The vari-

ables ri and si denote the spatial location of the i th observation location while the variables

rj and sj indicate the spatial position of the jth point. Thus a spatially weighted covariance

can be computed between the point of estimation and the measurements, C_i, and between

the observations themselves, Aij, given the weighting function. The calculation of C_i can
be expressed by:

= (22)
where the subscript x is used to denote the desired location, (r_, s_), of the estimate, while

the weighted observation matrix, Aij, is determined from the following equation:

2
Aij = W_:e_ + tr_ 6ij

where 6ij is the Kronecker delta function expressed as:

6o.= { 0 ifi#j1 ifi=j

and a, the standard deviation of the error.

(23)

(24)

The one drawback of using this technique is the inversion of the observation covariance

matrix, Aii. If a large number of observations exist then the dimension of the covariance

matrix becomes cumbersome and hard to numerically invert. However, to speed the nu-

Table 1: Thermal Sensor Locations and Temperature Measurements for Cases 1-3

Sensor No.

4

5

6

Sensor Position

Case 1r (era) s (cm)

33..75 76.2

95.25 76.2

158.75 76.2

31.75 228.6

95.25 228.6

158.75 228.6

285.75 152.4

476.25 152.4

666.75 152.4

72.8795

72.9475

72.9530

72.8510

72.9433

72.9525

Temperature °C

Case 2 (Thermister)

75.6214

75.1302

69.0273

76.0959

Case 3 (PRT)

73.8198

72.4815

73.5481

73.4943

70.5750 72.3178

71.1157 73.8453

72.97807 72.9534 72.4241

8 72.9534 72.7547

9 72.9534

72.4675

72.8162 72.7367
I
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merical inversion process, the order of the covariance matrix could be reduced, keeping

only those observations having a correlation value above a specified limit.

RESULTS

For this study, the arrangement of the thermal sensors on a typical solar array front surface,

labeled 1 through 9 as shown in Figure 4, represent the spatial location of the temperature

observations. The length (762.0 cm) and width (304.8 cm) of the array represent the

spatial area scales, r_t_ and s_,te respectively. To demonstrate the technique, temperature

measurements at the nine locations, all at a single point in time, are used. The factor

is set equal to 5.0 to provide a maximum correlation of 1.0. The technique is first used

with data that is assumed true with no measurement error, e.g. ei = 0. Thus the error

matrix will represent the covariance of the unbiased estimate. The temperature data and

the locations of the thermal sensors are listed in Table 1 under the Case 1 heading. The

prescribed point of estimation is positioned at (381,50.8) cm for this and all examples.

Applying the technique, the computed estimate is 72.9523°C with a standard deviation

of 0.023°C. The estimated temperature is consistant with the observed data and the

standard deviation of 0.023°C represents a small deviation from the true temperature at

the estimation point. A second example is illustrated by corrupting the true temperature
measurements with error. In one case the sensors are considered to be thermisters and in

another the PRT sensor is used. The standard deviation of the error is assumed to be 4°C

for the thermister and I°C for the PRT. Case 2 shows the thermister simulated temperature

data and Case 3 represents the PRT data as shown in Table 1. The temperature estimates

for the thermister and PRT data are 73.1893°C and 73.0396°C with standard deviations

of 2.205°C and 0.530°C respectively. The estimates for each of the 3 cases fall within

S

762.0 cm

© - THERMAL
SENSOR

T
O0
O
4_

1
Figure 7: 10-Element Distributed Thermal Sensor Network on a Typical Solar Array (Front Surface)
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the range of the observed data with Case 2 exhibiting the largest standard deviation. The

standard deviation for Case 2 is a result of the large variance associated with the simulated

thermister data set.

If the parameter q is allowed to approach 0 from its maximum value of 5.0, the quality

of the observations is deg_'aded. Furthermore, as q decreases the estimate is expected to

degrade with an increase in the standard devation. To test this hypothesis, estimates and

standard deviations for the 3 test cases were recomputed for values of _/ranging from 0.1

to 5.0 in 0.1 increments. Figures 5 and 6 show the estimated temperatures and standard

deviations, respectively, for the true data (Case 1), the thermister data (Case 2) and the

PRT data (Case 3). An inspection of Figure 5 reveals that the temperature estimate for

Case 1 remains essentially constant, 72.955°C, for ff > 0.8. In the range of "7 < 0.8, the

Case 1 temperature estimates reach a maximum of 73.185°C at q = 0.2 and a minimum of

72.92°C at "7 = 0.4. The large deviations occur as the elements of the Aq matrix approach

small values resulting in an inverse matrix with large components. Case 2 also shows a

non-linear change in the temperature estimate for q < 0.8 with a minima at 73.155°C.

The estimate reaches an approximate steady state value of 73.19°C with a slight downward

trend for -_ > 3.5. Case 3 temperature estimates indicate a linear decrease in temperature

from 73.7°C to 73.4°C with a slope of approximately 0.065 "c for -_ > 0.4. When
"_in,:rern_nt

"7 < 0.4,the slope increases to -0.33 ('o . The standard deviations for the 3 Cases, as
"_inerernerLt

a function of % are illustrated in Figure 6. The standard deviation for the true data (Case

1) remains essentially constant with a value of approximately 0.023% The thermister data

set (Case 2) shows a linear decrease in standard deviation from 2.9°C to 2.2°C with a

AS

762.0 cm =

/

-4=-5--6

-1---2--3-
I I I

I [ I
Ar

x/ kl kJ

7 8 9

Ar = 31.75 cm
As = 25.40 cm

- THERMAL
SENSOR

(A)
0

O
3

Figure 8: Grid Point Locations Superposed on 9-Element Distributed Thermal Sensor Network
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slopeof 0.14 °c as _ increases. The standard deviation of the PRT data also shows a
_incr er_ent

linearly decreasing trend but with a much more subtle slope of 0.04 "c . As expected
_/'t'n v r _'m e n f

the estimates for the 3 Cases degrade with an associated increase in the standard deviation

as ff approaches a small value.

Another example is illustrated for the case when a hot spot exists on the solar array. For

this example a junction box is placed at the location (508,38.1) cm. An additional thermal

sensor is also placed at the junction box location. It is assumed that the temperature of

the junction box is 82.0°C. Figure 7 shows the new thermal sensor configuration for the

front array panel and Table 2 lists the position of the sensors along with the observation

data. The parameter "7 is equal to 5.0 to provide a maximum correlation of 1.0. The

optimal temperature estimation routine provides an estimate of 78.1648°C and a standard

deviation of 1.312°C for the true temperature, Case 4. Estimates were also computed

assuming that the data were measured using a thermister (Case 5) and a PRT (Case

6). The estimates are 75.0298°C and 77.5123°C respectively with standard deviations of
2.181°C and 1.500 °. Table 3 summarizes the estimates and the standard deviations for

each case.

Since the optimal temperature estimation technique has the ability to provide a tempera-

ture estimate at any location, a grid of temperature estimates can be generated to char-

acterize the temperature profile of the entire array using a finite set of data observations.

Using only Case 1 from the above discussion this capability will be demonstrated. The

grid point locations are illustrated in Figure 8 where the incremental distances between

nodes are Ar = 31.75 cm and As = 25.4 cm. In order to assess the accuracy of the estima-

tion technique, grid points were colocated with the thermal sensor positions as shown in

Figure 8. The contoured array front surface temperature profile is shown in Figure 9. The

standard deviations associated with the array surface temperature estimates are presented

in Figure 10. Table 4 depicts the true and estimated temperatures at the nine thermal

sensor locations. A comparison using the percent error between the true and estimated

values shows excellent agreement with the largest deviation being 0.309%. The standard

deviation for each temperature estimate is" also small indicating a small dispersion from

the true temperature, thus providing a reasonable estimate for this example.

Table 2: Thermal Sensor Locations and Temperature Measurements for Cases 4-6

Sensor No. Sensor Position

r (cm)

31.75

95.25

s (cm)

76.2

76.2

3 158.75 76.2

4 31.75 228.6

95.25

158.75

285.75

476.25

5

6

8

228.6

228.6

152.4

152.4

Temperature °C

Case 4 Case 5 Thermister) Case 6 (PRT)

72.8795

72.9475

72.9530

72.8510

72.9433

72.9525

72.9534

72.9534

74.4008

71.5595

71.0906

75.2109

69.3491

76.6270

75.1502

75.2135

72.2307

73.5006

72.8149

73.2364

72.4154

72.7314

73.6916

72.6657

9 666.75 152.4 72.9534 75.0416 72.4325

10 508.00 38.1 82.0000 79.8574 82.2281
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Figure 10: Contoured Standard Deviations Associated with Array Front Surface Temperature
Estimates for 9-Element Distributed Thermal Sensor Network
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Table3: Summaryof Temperature Estimates and Standard Deviations for Cases 1

Case No.

2

3

4

5

6

Temperature Estimate °C I Standard Deviation °C

72.9523

73.1893

73.0396

78.1648

75.0298

77.5123

0.023

2.205
0.530

1.312

2.181

1.500

Table 4: Accuracy of Temperature Estimates Compared to True Observations

Sensor No.

1

2

3

4

5

6

7

8

9

Temperature

True °C

72.8795

72.9475

72.9530

72.8510

72.9433

TemperatureEstimate °C

72.8092

72.7262

73:0036

72.8480

72.8636

Standard

Deviation °C

0.026

0.023

0.022

0.026

0.024

% Error

0.096

0.303

0.069

0.004

0.109

72.9525 72.7269 0.022 0.309

72.9534 72.8073 0.200

72.9534
72.9534

72.9120

0.018

0.029

0.03372.9622

0.057
0.012

CONCLUSIONS

An optimal temperature estimation technique has been described and used to estimate the

surface temperature of a satellite solar array at a prescribed location. The technique also

provides error information relative to the estimated variable. This technique is capable of

determining array surface temperatures at any location, with reasonable accuracy, from

a finite set of observational data. Applying the procedure to both surfaces o[ the array,

as a function of time, and differencing the surface temperature estimates will result in an

estimated thermal gradient profile. The thermal gradient estimates can then be utilized

to drive the TES disturbance model in order to evaluate the true nature of the TES

disturbance.

REFERENCES

1. Anonymous, LANDSAT-4 Flight Evaluation Report, 16 October 1982 to 16 January

1983, GE Document 83SDS4203, 16 January 1983, (Contract NAS 5-25300).

2. Bretherton, F.P., R.E. Davis and C.B. Fandry, "A Technique for Objective Analysis

and Design of Oceanographic Experiments Applied to MODE-73," Deep Sea _Research,

Vol. 23, pp. 559-582, 1976.

3. Dennehy, C.J., T. Kin and R.V. We!ch,"Attitude Determination and Control Subsys-

tem for the TOPEX Satellite," AIAA Paper 88-4129, 1988.

445



o

5,

Dennehy, C., D. Zimbelman and R. Welch,"Sunrise/Sunset Thermal Shock Distur-

bance Analysis and Simulation for the TOPEX Satellite," AIAA Paper 90-0470,

1990.

Hamsath, N., and P. M. Bainum,"The Development of an Environmental Disturbance

Model for Large Space Structures after the Onset of Thermal Shock," AIAA Paper

86-2123, 1986.

6. Liebelt, P.B., An Introduction to Optimal Estimation, Addison-Wesley Publishing

Company, Massachusetts, 1967.

7. Vigneron, F.R. and R.A. Millar,"Flight Performance of the Stabilization System of

the Communications Technology Satellite," Journal of Guidance and Control, Vol.

1, 1978, pp. 404-412.

445


