4,365 research outputs found

    Theoretical study of even denominator fractions in graphene: Fermi sea versus paired states of composite fermions

    Full text link
    The physics of the state at even denominator fractional fillings of Landau levels depends on the Coulomb pseudopotentials, and produces, in different GaAs Landau levels, a composite fermion Fermi sea, a stripe phase, or, possibly, a paired composite fermion state. We consider here even denominator fractions in graphene, which has different pseudopotentials as well as a possible four fold degeneracy of each Landau level. We test various composite fermion Fermi sea wave functions (fully polarized, SU(2) singlet, SU(4) singlet) as well as the paired composite fermion states in the n=0 and n=1n=1 Landau levels and predict that (i) the paired states are not favorable, (ii) CF Fermi seas occur in both Landau levels, and (iii) an SU(4) singlet composite fermion Fermi sea is stabilized in the appropriate limit. The results from detailed microscopic calculations are generally consistent with the predictions of the mean field model of composite fermions

    Radion Phenomenology in Realistic Warped Space Models

    Full text link
    We investigate the phenomenology of the Randall-Sundrum radion in realistic models of electroweak symmetry breaking with bulk gauge and fermion fields, since the radion may turn out to be the lightest particle in such models. We calculate the coupling of the radion in such scenarios to bulk fermion and gauge modes. Special attention needs to be devoted to the coupling to massless gauge fields (photon, gluon), since it is well known that loop effects may be important for these fields. We also present a detailed explanation of these couplings from the CFT interpretation. We then use these couplings to determine the radion branching fractions and discuss some of the discovery potential of the LHC for the radion. We find that the gamma-gamma signal is enhanced over most of the range of the radion mass over the gamma-gamma signal of a SM Higgs, as long as the RS scale is sufficiently low. However, the signal significance depends strongly on free parameters that characterize the magnitude of bare brane-localized kinetic terms for the massless gauge fields. In the absence of such terms, the signal can be be enhanced over the traditional RS1 models (where all standard model fields are localized on the IR brane), but the signal can also be reduced compared to RS1 if the brane localized terms are sizeable. We also show that for larger radion masses, where the gamma-gamma signal is no longer significant, one can use the usual 4 lepton signal to discover the radion.Comment: 28 pages, 7 figure

    Luttinger theorem for the strongly correlated Fermi liquid of composite fermions

    Get PDF
    While an ordinary Fermi sea is perturbatively robust to interactions, the paradigmatic composite-fermion (CF) Fermi sea arises as a non-perturbative consequence of emergent gauge fields in a system where there was no Fermi sea to begin with. A mean-field picture suggests two Fermi seas, of composite fermions made from electrons or holes in the lowest Landau level, which occupy different areas away from half filling and thus appear to represent distinct states. We show that in the microscopic theory of composite fermions, which satisfies particle-hole symmetry in the lowest Landau level to an excellent degree, the Fermi wave vectors at filling factors ν\nu and 1ν1-\nu are the same, and are generally consistent with the experimental findings of Kamburov {\em et al.} [Phys. Rev. Lett. {\bf 113}, 196801 (2014)]. Our calculations suggest that the area of the CF Fermi sea may slightly violate the Luttinger area rule.Comment: 21 pages, 17 figures including supplemental material, published versio

    European studies: Taking stock and looking ahead

    Get PDF
    This essay is an attempt to generalize experiences of Central and Eastern European universities in the field of European Studies over the past 20 years. The paper follows the logic of business analysis in order to come up with proposals for future action

    And the first shall be the last

    Get PDF
    This study analyzes the puzzle of Hungarian economic drifting in a long run perspective. The underlying puzzle for the investigation is why bad policies are invariably popular and good policies unpopular, thus why political and economic rationality never overlap. The first part of the article summarizes in eight points the basic features of the postwar period. Then six lessons are offered, which might be useful for other countries in transition or for students of comparative economics and politics, lessons that can be generalized on the basis of the individual country experience

    Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2.

    Get PDF
    Parvalbumin-expressing, fast-spiking basket cells are important for the generation of synchronous, rhythmic population activities in the hippocampus. We found that GABAA receptor-mediated synaptic inputs from murine parvalbumin-expressing basket cells were selectively modulated by the membrane voltage- and intracellular chloride-dependent chloride channel ClC-2. Our data reveal a previously unknown cell type-specific regulation of intracellular chloride homeostasis in the perisomatic region of hippocampal pyramidal neurons

    Phase Diagram of Fractional Quantum Hall Effect of Composite Fermions in Multi-Component Systems

    Get PDF
    While the integer quantum Hall effect of composite fermions manifests as the prominent fractional quantum Hall effect (FQHE) of electrons, the FQHE of composite fermions produces further, more delicate states, arising from a weak residual interaction between composite fermions. We study the spin phase diagram of these states, motivated by the recent experimental observation by Liu {\em et al.} \cite{Liu14a,Liu14b} of several spin-polarization transitions at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11 and 10/13 in GaAs systems. We show that the FQHE of composite fermions is much more prevalent in multicomponent systems, and consider the feasibility of such states for systems with N{\cal N} components for an SU(N{\cal N}) symmetric interaction. Our results apply to GaAs quantum wells, wherein electrons have two components, to AlAs quantum wells and graphene, wherein electrons have four components (two spins and two valleys), and to an H-terminated Si(111) surface, which can have six components. The aim of this article is to provide a fairly comprehensive list of possible incompressible fractional quantum Hall states of composite fermions, their SU(N{\cal N}) spin content, their energies, and their phase diagram as a function of the generalized "Zeeman" energy. We obtain results at three levels of approximation: from ground state wave functions of the composite fermion theory, from composite fermion diagonalization, and, whenever possible, from exact diagonalization. Effects of finite quantum well thickness and Landau level mixing are neglected in this study. We compare our theoretical results with the experiments of Liu {\em et al.} \cite{Liu14a,Liu14b} as well as of Yeh {\em et al.} \cite{Yeh99} for a two component system.Comment: 29 pages, 6 figure

    High Resolution Valley Spectroscopy of Si Quantum Dots

    Full text link
    We study an accumulation mode Si/SiGe double quantum dot (DQD) containing a single electron that is dipole coupled to microwave photons in a superconducting cavity. Measurements of the cavity transmission reveal dispersive features due to the DQD valley states in Si. The occupation of the valley states can be increased by raising temperature or applying a finite source-drain bias across the DQD, resulting in an increased signal. Using cavity input-output theory and a four-level model of the DQD, it is possible to efficiently extract valley splittings and the inter- and intra-valley tunnel couplings
    corecore