516 research outputs found

    Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    Get PDF
    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness, and radiation effect (silicon rad and rem dose)

    Ionizing radiation calculations and comparisons with LDEF data

    Get PDF
    In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy

    Three-dimensional shielding effects on charged particle fluences measured in the P0006 experiment of LDEF

    Get PDF
    Three-dimensional shielding effects on cosmic ray charged particle fluences were measured with plastic nuclear track detectors in the P0006 experiment on Long Duration Exposure Facility (LDEF). The azimuthal and polar angle distributions of the galactic cosmic ray particles (mostly relativistic iron) were measured in the main stack and in four side stacks of the P0006 experiment, located on the west end of the LDEF satellite. A shadowing effect of the shielding of the LDEF satellite is found. Total fluence of stopping protons was measured as a function of the position in the main and side stacks of the P0006 experiment. Location dependence of total track density is explained by the three-dimensional shielding model of the P0006 stack. These results can be used to validate 3D mass model and transport code calculations and also for predictions of the outer radiation environment for the Space Station Freedom

    Spatio-temporal modelling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique

    Get PDF
    Malaria is a major cause of morbidity and mortality in Mozambique. We present a malaria early warning system (MEWS) for Mozambique informed by seven years of weekly case reports of malaria in children under 5 years of age from 142 districts. A spatio-temporal model was developed based on explanatory climatic variables to map exceedance probabilities, defined as the predictive probability that the relative risk of malaria incidence in a given district for a particular week will exceed a predefined threshold. Unlike most spatially discrete models, our approach accounts for the geographical extent of each district in the derivation of the spatial covariance structure to allow for changes in administrative boundaries over time. The MEWS can thus be used to predict areas that may experience increases in malaria transmission beyond expected levels, early enough so that prevention and response measures can be implemented prior to the onset of outbreaks. The framework we present is also applicable to other climate-sensitive diseases

    Sleeping arrangements and mass distribution of bed nets in six districts in central and northern Mozambique

    Get PDF
    OBJECTIVE: Universal coverage with insecticide-treated bed nets is a cornerstone of modern malaria control. Mozambique has developed a novel bed net allocation strategy, where the number of bed nets allocated per household is calculated on the basis of household composition and assumptions about who sleeps with whom. We set out to evaluate the performance of the novel allocation strategy. METHODS: 1,994 households were visited during household surveys following two universal coverage bed net distribution campaigns in Sofala and Nampula Provinces in 2010-2013. Each sleeping space was observed for the presence of a bed net, and the sleeping patterns for each household were recorded. The observed coverage and efficiency were compared to a simulated coverage and efficiency had conventional allocation strategies been used. A composite indicator, the product of coverage and efficiency, was calculated. Observed sleeping patterns were compared with the sleeping pattern assumptions. RESULTS: In households reached by the campaign, 93% (95% CI: 93-94%) of sleeping spaces in Sofala and 84% (82-86%) in Nampula were covered by campaign bed nets. The achieved efficiency was high, with 92% (91-93%) of distributed bed nets in Sofala and 93% (91-95%) in Nampula covering a sleeping space. Using the composite indicator, the novel allocation strategy outperformed all conventional strategies in Sofala and was tied for best in Nampula. The sleeping pattern assumptions were completely satisfied in 66% of households in Sofala and 56% of households in Nampula. The most common violation of the sleeping pattern assumptions was that male children 3-10 years of age tended not to share sleeping spaces with female children 3-10 or 10-16 years of age. CONCLUSIONS: The sleeping pattern assumptions underlying the novel bed net allocation strategy are generally valid, and net allocation using these assumptions can achieve high coverage and compare favorably with conventional allocation strategies. This article is protected by copyright. All rights reserved

    Enhanced high-dispersion coronagraphy with KPIC phase II: design, assembly and status of sub-modules

    Get PDF
    The Keck Planet Imager and Characterizer (KPIC) is a purpose-built instrument for high-dispersion coronagraphy in the K and L bands on Keck. This instrument will provide the first high resolution (R>30,000) spectra of known directly imaged exoplanets and low-mass brown dwarf companions visible in the northern hemisphere. KPIC is developed in phases. Phase I is currently at Keck in the early operations stage, and the phase II upgrade will deploy in late 2021. The goal of phase II is to maximize the throughput for planet light and minimize the stellar leakage, hence reducing the exposure time needed to acquire spectra with a given signal-to- noise ratio. To achieve this, KPIC phase II exploits several innovative technologies that have not been combined this way before. These include a 1000-element deformable mirror for wavefront correction and speckle control, a set of lossless beam shaping optics to maximize coupling into the fiber, a pupil apodizer to suppress unwanted starlight, a pupil plane vortex mask to enable the acquisition of spectra at and within the diffraction limit, and an atmospheric dispersion compensator. These modules, when combined with the active fiber injection unit present in phase I, will make for a highly efficient exoplanet characterization platform. In this paper, we will present the final design of the optics and opto-mechanics and highlight some innovative solutions we implemented to facilitate all the new capabilities. We will provide an overview of the assembly and laboratory testing of the sub-modules and some of the results. Finally, we will outline the deployment timeline

    Toward the effective surveillance of hypospadias.

    Get PDF
    Concern about apparent increases in the prevalence of hypospadias--a congenital male reproductive-tract abnormality--in the 1960s to 1980s and the possible connection to increasing exposures to endocrine-disrupting chemicals have underlined the importance of effective surveillance of hypospadias prevalence in the population. We report here the prevalence of hypospadias from 1980 to 1999 in 20 regions of Europe with EUROCAT (European Surveillance of Congenital Anomalies) population-based congenital anomaly registers, 14 of which implemented a guideline to exclude glanular hypospadias. We also report data from the England and Wales National Congenital Anomaly System (NCAS). Our results do not suggest a continuation of rising trends of hypospadias prevalence in Europe. However, a survey of the registers and a special validation study conducted for the years 1994-1996 in nine EUROCAT registers as well as NCAS identified a clear need for a change in the guidelines for registration of hypospadias. We recommend that all hypospadias be included in surveillance, but that information from surgeons be obtained to verify location of the meatus, and whether surgery was performed, in order to interpret trends. Investing resources in repeated special surveys may be more cost-effective than continuous population surveillance. We conclude that it is doubtful whether we have had the systems in place worldwide for the effective surveillance of hypospadias in relation to exposure to potential endocrine-disrupting chemicals
    corecore