1,743 research outputs found
Narrow band microwave radiation from a biased single-Cooper-pair transistor
We show that a single-Cooper-pair transistor (SCPT) electrometer emits
narrow-band microwave radiation when biased in its sub-gap region. Photo
activation of quasiparticle tunneling in a nearby SCPT is used to
spectroscopically detect this radiation, in a configuration that closely mimics
a qubit-electrometer integrated circuit. We identify emission lines due to
Josephson radiation and radiative transport processes in the electrometer, and
argue that a dissipative superconducting electrometer can severely disrupt the
system it attempts to measure.Comment: 4 pages, 3 figure
Spin dynamics of current driven single magnetic adatoms and molecules
A scanning tunneling microscope can probe the inelastic spin excitations of a
single magnetic atom in a surface via spin-flip assisted tunneling in which
transport electrons exchange spin and energy with the atomic spin. If the
inelastic transport time, defined as the average time elapsed between two
inelastic spin flip events, is shorter than the atom spin relaxation time, the
STM current can drive the spin out of equilibrium. Here we model this process
using rate equations and a model Hamiltonian that describes successfully spin
flip assisted tunneling experiments, including a single Mn atom, a Mn dimer and
Fe Phthalocyanine molecules. When the STM current is not spin polarized, the
non-equilibrium spin dynamics of the magnetic atom results in non-monotonic
curves. In the case of spin polarized STM current, the spin orientation
of the magnetic atom can be controlled parallel or anti-parallel to the
magnetic moment of the tip. Thus, spin polarized STM tips can be used both to
probe and to control the magnetic moment of a single atom.Comment: 15 pages, 12 figure
Measurement of the ac Stark shift with a guided matter-wave interferometer
We demonstrate the effectiveness of a guided-wave Bose-Einstein condensate
interferometer for practical measurements. Taking advantage of the large arm
separations obtainable in our interferometer, the energy levels of the 87Rb
atoms in one arm of the interferometer are shifted by a calibrated laser beam.
The resulting phase shifts are used to determine the ac polarizability at a
range of frequencies near and at the atomic resonance. The measured values are
in good agreement with theoretical expectations. However, we observe a
broadening of the transition near the resonance, an indication of collective
light scattering effects. This nonlinearity may prove useful for the production
and control of squeezed quantum states.Comment: 5 pages, three figure
Decoherence of adiabatically steered quantum systems
We study the effect of Markovian environmental noise on the dynamics of a
two-level quantum system which is steered adiabatically by an external driving
field. We express the master equation taking consistently into account all the
contributions to the lowest non-vanishing order in the coupling to the
Markovian environment. We study the master equation numerically and
analytically and we find that, in the adiabatic limit, a zero-temperature
environment does not affect the ground state evolution. As a physical
application, we discuss extensively how the environment affects Cooper pair
pumping. The adiabatic ground state pumping appears to be robust against
environmental noise. In fact, the relaxation due to the environment is required
to avoid the accumulation of small errors from each pumping cycle. We show that
neglecting the non-secular terms in the master equation leads to unphysical
results, such as charge non-conservation. We discuss also a possible way to
control the environmental noise in a realistic physical setup and its influence
on the pumping process.Comment: 13 pages, 11 figures. Final versio
Tree-level electron-photon interactions in graphene
Graphene's low-energy electronic excitations obey a 2+1 dimensional Dirac
Hamiltonian. After extending this Hamiltonian to include interactions with a
quantized electromagnetic field, we calculate the amplitude associated with the
simplest, tree-level Feynman diagram: the vertex connecting a photon with two
electrons. This amplitude leads to analytic expressions for the 3D angular
dependence of photon emission, the photon-mediated electron-hole recombination
rate, and corrections to graphene's opacity and dynamic
conductivity for situations away from thermal equilibrium, as
would occur in a graphene laser. We find that Ohmic dissipation in perfect
graphene can be attributed to spontaneous emission.Comment: 5 pages, 3 figure
Noncovariant gauge fixing in the quantum Dirac field theory of atoms and molecules
Starting from the Weyl gauge formulation of quantum electrodynamics (QED),
the formalism of quantum-mechanical gauge fixing is extended using techniques
from nonrelativistic QED. This involves expressing the redundant gauge degrees
of freedom through an arbitrary functional of the gauge-invariant transverse
degrees of freedom. Particular choices of functional can be made to yield the
Coulomb gauge and Poincar\'{e} gauge representations. The Hamiltonian we derive
therefore serves as a good starting point for the description of atoms and
molecules by means of a relativistic Dirac field. We discuss important
implications for the ontology of noncovariant canonical QED due to the gauge
freedom that remains present in our formulation.Comment: 8 pages, 0 figure
State-dependent rotations of spins by weak measurements
IIt is shown that a weak measurement of a quantum system produces a new state
of the quantum system which depends on the prior state, as well as the
(uncontrollable) measured position of the pointer variable of the weak
measurement apparatus. The result imposes a constraint on hidden-variable
theories which assign a different state to a quantum system than standard
quantum mechanics. The constraint means that a crypto-nonlocal hidden-variable
theory can be ruled out in a more direct way than previously.Comment: 10 pages, 2 figures. Substantially revised to concentrate on weak
measurement transformation of states and application to crypto-nonlocal
hidden-variable theor
Low-decoherence flux qubit
A flux qubit can have a relatively long decoherence time at the degeneracy
point, but away from this point the decoherence time is greatly reduced by
dephasing. This limits the practical applications of flux qubits. Here we
propose a new qubit design modified from the commonly used flux qubit by
introducing an additional capacitor shunted in parallel to the smaller
Josephson junction (JJ) in the loop. Our results show that the effects of noise
can be considerably suppressed, particularly away from the degeneracy point, by
both reducing the coupling energy of the JJ and increasing the shunt
capacitance. This shunt capacitance provides a novel way to improve the qubit.Comment: 4 pages, 4 figure
Probe spectroscopy in an operating magneto-optical trap: the role of Raman transitions between discrete and continuum atomic states
We report on cw measurements of probe beam absorption and four-wave-mixing
spectra in a Rb magneto-optical trap taken while the trap is in
operation. The trapping beams are used as pump light. We concentrate on the
central feature of the spectra at small pump-probe detuning and attribute its
narrow resonant structures to the superposition of Raman transitions between
light-shifted sublevels of the ground atomic state and to atomic recoil
processes. These two contributions have different dependencies on trap
parameters and we show that the former is inhomogeneously broadened. The strong
dependence of the spectra on the probe-beam polarization indicates the
existence of large optical anisotropy of the cold-atom sample, which is
attributed to the recoil effects. We point out that the recoil-induced
resonances can be isolated from other contributions, making pump-probe
spectroscopy a highly sensitive diagnostic tool for atoms in a working MOT.Comment: 9 pages, 8 figure
Creation and detection of a mesoscopic gas in a non-local quantum superposition
We investigate the scattering of a quantum matter wave soliton on a barrier
in a one dimensional geometry and we show that it can lead to mesoscopic
Schr\"odinger cat states, where the atomic gas is in a coherent superposition
of being in the half-space to the left of the barrier and being in the
half-space to the right of the barrier. We propose an interferometric method to
reveal the coherent nature of this superposition and we discuss in details the
experimental feasibility.Comment: 4 pages, 1 figur
- …