495 research outputs found

    Parents mimic and influence their infant’s autonomic state through dynamic affective state matching

    Get PDF
    When we see someone experiencing an emotion, and when we experience it ourselves, common neurophysiological activity occurs [1, 2]. But although inter-dyadic synchrony, concurrent and sequential [3], has been identified, its functional significance remains inadequately understood. Specifically, how do influences of partner A on partner B reciprocally influence partner A? For example, if I am experiencing an affective state and someone matches their physiological state to mine, what influence does this have on me – the person experiencing the emotion? Here, we investigated this using infant-parent dyads. We developed miniaturised microphones to record spontaneous vocalisations and wireless autonomic monitors to record heart rate, heart rate variability and movement in infants and parents concurrently in naturalistic settings. Overall, we found that infant-parent autonomic activity did not covary across the day – but that ‘high points’ of infant arousal led to autonomic changes in the parent, and that instances where the adult showed greater autonomic responsivity were associated with faster infant quieting. Parental responsivity was higher following peaks in infant negative affect than in positive affect. Overall, parents responded to increases in their child’s arousal by increasing their own. However, when the overall arousal level of the dyad was high, parents responded to elevated child arousal by decreasing their own arousal. Our findings suggest that autonomic state matching has a direct effect on the person experiencing the affective state, and that parental co-regulation may involve both connecting, and disconnecting, their own arousal state from that of the child contingent on context

    Orientation attachment for crystallographic apparatus

    Full text link

    Virtual screening for inhibitors of the human TSLP:TSLPR interaction

    Get PDF
    The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) plays a pivotal role in the pathophysiology of various allergy disorders that are mediated by type 2 helper T cell (Th2) responses, such as asthma and atopic dermatitis. TSLP forms a ternary complex with the TSLP receptor (TSLPR) and the interleukin-7-receptor subunit alpha (IL-7Ra), thereby activating a signaling cascade that culminates in the release of pro-inflammatory mediators. In this study, we conducted an in silico characterization of the TSLP: TSLPR complex to investigate the drugability of this complex. Two commercially available fragment libraries were screened computationally for possible inhibitors and a selection of fragments was subsequently tested in vitro. The screening setup consisted of two orthogonal assays measuring TSLP binding to TSLPR: a BLI-based assay and a biochemical assay based on a TSLP: alkaline phosphatase fusion protein. Four fragments pertaining to diverse chemical classes were identified to reduce TSLP: TSLPR complex formation to less than 75% in millimolar concentrations. We have used unbiased molecular dynamics simulations to develop a Markov state model that characterized the binding pathway of the most interesting compound. This work provides a proof-ofprinciple for use of fragments in the inhibition of TSLP: TSLPR complexation

    KFC Server: interactive forecasting of protein interaction hot spots

    Get PDF
    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model—a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein–protein or protein–DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org

    Chemical Biology is.....

    Get PDF
    Chemical Biology is a relatively new field, and as such is not yet simply or succinctly defined. It includes such a wide range of fundamental problems that this commentary could only include just a few snapshots of potential areas of interest. Overarching themes and selected recent successes and ideas in chemical biology are described to illustrate broadly the scope of the field, but should not be taken as exhaustive. The Chemical Biology Section of Chemistry Central Journal is pleased to receive manuscripts describing research into all and any aspects of the subject

    Crizotinib-Resistant Mutants of EML4-ALK Identified Through an Accelerated Mutagenesis Screen

    Get PDF
    Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non-small-cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non-small-cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib-resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK-positive non-small-cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib's narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance

    Entropic Tension in Crowded Membranes

    Get PDF
    Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function \emph{in vivo}. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2  kBT2\;k_BT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in PLoS Comp. Bio

    ANCHOR: a web server and database for analysis of protein–protein interaction binding pockets for drug discovery

    Get PDF
    ANCHOR is a web-based tool whose aim is to facilitate the analysis of protein–protein interfaces with regard to its suitability for small molecule drug design. To this end, ANCHOR exploits the so-called anchor residues, i.e. amino acid side-chains deeply buried at protein–protein interfaces, to indicate possible druggable pockets to be targeted by small molecules. For a given protein–protein complex submitted by the user, ANCHOR calculates the change in solvent accessible surface area (ΔSASA) upon binding for each side-chain, along with an estimate of its contribution to the binding free energy. A Jmol-based tool allows the user to interactively visualize selected anchor residues in their pockets as well as the stereochemical properties of the surrounding region such as hydrogen bonding. ANCHOR includes a Protein Data Bank (PDB) wide database of pre-computed anchor residues from more than 30 000 PDB entries with at least two protein chains. The user can query according to amino acids, buried area (SASA), energy or keywords related to indication areas, e.g. oncogene or diabetes. This database provides a resource to rapidly assess protein–protein interactions for the suitability of small molecules or fragments with bioisostere anchor analogues as possible compounds for pharmaceutical intervention. ANCHOR web server and database are freely available at http://structure.pitt.edu/anchor
    corecore