667 research outputs found

    Cooperation in stochastic inventory models with continuous review

    Get PDF
    Consider multiple companies that continuously review their inventories and face Poisson demand. We study cooperation strategies for these companies and analyse if there exist allocations of the joint cost such that any company has lower costs than on its own; such allocations are called stable cost allocations. We start with two companies that jointly place an order for replenishment if their joint inventory position reaches a certain reorder level. This strategy leads to a simple expression of the joint costs. However, these costs exceed the costs for non-cooperating companies. Therefore, we examine another cooperation strategy. Namely, the companies reorder as soon as one of them reaches its reorder level. This latter strategy has lower costs than for non-cooperating companies. Numerical experiments show that the gametheoretical distribution rule — a cost allocation in which the companies share the procurement cost and each pays its own holding cost — is a stable cost allocation. These results also hold for situations with multiple companies

    Universality classes in directed sandpile models

    Full text link
    We perform large scale numerical simulations of a directed version of the two-state stochastic sandpile model. Numerical results show that this stochastic model defines a new universality class with respect to the Abelian directed sandpile. The physical origin of the different critical behavior has to be ascribed to the presence of multiple topplings in the stochastic model. These results provide new insights onto the long debated question of universality in abelian and stochastic sandpiles.Comment: 5 pages, RevTex, includes 9 EPS figures. Minor english corrections. One reference adde

    Corrections to scaling in the forest-fire model

    Get PDF
    We present a systematic study of corrections to scaling in the self-organized critical forest-fire model. The analysis of the steady-state condition for the density of trees allows us to pinpoint the presence of these corrections, which take the form of subdominant exponents modifying the standard finite-size scaling form. Applying an extended version of the moment analysis technique, we find the scaling region of the model and compute the first non-trivial corrections to scaling.Comment: RevTeX, 7 pages, 7 eps figure

    Can Neuromorphic Computer Vision Inform Vision Science? Disparity Estimation as a Case Study

    Get PDF
    The primate visual system efficiently and effectively solves a multitude of tasks from orientation detection to motion detection. The Computer Vision community is therefore beginning to implement algorithms that mimic the processing hierarchies present in the primate visual system in the hope of achieving flexible and robust artificial vision systems. Here, we reappropriate the neuroscience “borrowed” by the Computer Vision community and ask whether neuromorphic computer vision solutions may give us insight into the functioning of the primate visual system. Specifically, we implement a neuromorphic algorithm for disparity estimation and compare its performance against that of human observers. The algorithm greatly outperforms human subjects when tuned with parameters to compete with non-neural approaches to disparity estimation on benchmarking stereo image datasets. Conversely, when the algorithm is implemented with biologically plausible receptive field sizes, spatial selectivity, phase tuning, and neural noise, its performance is directly relatable to that of human observers. The receptive field size and the number of spatial scales sensibly determine the range of spatial frequencies in which the algorithm successfully operates. The algorithm’s phase tuning and neural noise in turn determine the algorithm’s peak disparity sensitivity. When included, retino-cortical mapping strongly degrades disparity estimation in the model’s periphery, further closening human and algorithm performance. Hence, a neuromorphic computer vision algorithm can be reappropriated to model human behavior, and can provide interesting insights into which aspects of human visual perception have been or are yet to be explained by vision science

    Near-optimal combination of disparity across a log-polar scaled visual field

    Get PDF
    The human visual system is foveated: we can see fine spatial details in central vision, whereas resolution is poor in our peripheral visual field, and this loss of resolution follows an approximately logarithmic decrease. Additionally, our brain organizes visual input in polar coordinates. Therefore, the image projection occurring between retina and primary visual cortex can be mathematically described by the log-polar transform. Here, we test and model how this space-variant visual processing affects how we process binocular disparity, a key component of human depth perception. We observe that the fovea preferentially processes disparities at fine spatial scales, whereas the visual periphery is tuned for coarse spatial scales, in line with the naturally occurring distributions of depths and disparities in the real-world. We further show that the visual system integrates disparity information across the visual field, in a near-optimal fashion. We develop a foveated, log-polar model that mimics the processing of depth information in primary visual cortex and that can process disparity directly in the cortical domain representation. This model takes real images as input and recreates the observed topography of human disparity sensitivity. Our findings support the notion that our foveated, binocular visual system has been moulded by the statistics of our visual environment

    A Space-Variant Model for Motion Interpretation across the Visual Field

    Get PDF
    We implement a neural model for the estimation of the focus of radial motion (FRM) at different retinal locations and we assess the model by comparing its results with respect to the precision with which human observers can estimate the FRM in naturalistic, moving dead leaves stimuli. The proposed neural model describes the deep hierarchy of the first stages of the dorsal visual pathway [Solari et al., 2014]. Such a model is space-variant, since it takes into account the retino-cortical transformation of the primate visual system through log-polar mapping that produces a cortical representation of the visual signal to the retina. The log-polar transform of the retinal image is the input to the cortical motion estimation stage where optic flow is computed by a three-layer population of cells. A population of spatio-temporal oriented Gabor filters approximates the simple cells of area V1 (first layer), which are combined into complex cells as motion energy units (second layer). The responses of the complex cells are pooled (third layer) to encode the magnitude and direction of velocities as in the extrastriate motion pathway between area MT and MST. The sensitivity to complex motion patterns that has been found in area MST is modeled through a population of adaptive templates, and from the responses of such a population the first order description of optic flow is derived. Information about self-motion (e.g. direction of heading) is estimated by combining such first-order descriptors computed in the cortical domain

    Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018) - Volume 2: HUCAPP

    Get PDF
    This book contains the proceedings of the 13th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018) which was organized and sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC), in cooperation with AFIG and Eurographics. The proceedings here published demonstrate new and innovative solutions and highlight technical problems in each field that are challenging and worthwhile being disseminated to the interested research audiences. VISIGRAPP 2018 was organized to promote a discussion forum about the conference’s research topics between researchers, developers, manufacturers and end-users, and to establish guidelines in the development of more advanced solutions. We received a high number of paper submissions for this edition of VISIGRAPP, 321 in total, with contributions from all five continents. This attests to the success and global dimension of VISIGRAPP

    Fluctuations and correlations in sandpile models

    Get PDF
    We perform numerical simulations of the sandpile model for non-vanishing driving fields hh and dissipation rates ϵ\epsilon. Unlike simulations performed in the slow driving limit, the unique time scale present in our system allows us to measure unambiguously response and correlation functions. We discuss the dynamic scaling of the model and show that fluctuation-dissipation relations are not obeyed in this system.Comment: 5 pages, latex, 4 postscript figure
    • …
    corecore