16 research outputs found

    Fabrication of composite fan blades using PMR A-type polyimide resin and graphite fiber reinforcement

    Get PDF
    PMR polyimides are safe, easy to handle, can be processed with relatively wide process controls, and offer excellent mechanical properties, with thermo-oxidative stability. Procedures, staging and cure schedules fully dense, crackfree, dimensionally controlled, complex structure: high tip speed fan blades 1.27 cm (0.5 in) thick

    Fiber reinforced PMR polyimide composites

    Get PDF
    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices

    Composite impact strength improvement through a fiber/matrix interphase

    Get PDF
    Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus

    Resin/graphite fiber composites

    Get PDF
    Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades

    PMR polyimide/graphite fiber composite fan blades

    Get PDF
    Ultrahigh speed fan blades, designed in accordance with the requirements of an ultrahigh tip speed blade axial flow compressor, were fabricated from a high strength graphite fiber tow and a PMR polyimide resin. The PMR matrix was prepared by combining three monomeric reactants in methyl alcohol, and the solution was applied directly to the reinforcing fiber for subsequent in situ polymerization. Some of the molded blades were completely finished by secondary bonding of root pressure pads and an electroformed nickel leading edge sheath prior to final machining. The results of the spin testing of nine PMR fan blades are given. Prior to blade fabrication, heat resin tensile properties of the PMR resin were examined at four formulated molecular weight levels. Additionally, three formulated molecular weight levels were investigated in composite form with both a high modulus and a high strength fiber, both as-molded and postcured, in room temperature and 232 C transverse tensile, flexure and short beam shear. Mixed fiber orientation panels simulating potential blade constructions were also evaluated. Flexure tests, short beam shear tests, and tensile tests were conducted on these angle-plied laminates

    Second generation PMR polyimide/fiber composites

    Get PDF
    A second generation polymerization monomeric reactants (PMR) polyimdes matrix system (PMR 2) was characterized in both neat resin and composite form with two different graphite fiber reinforcements. Three different formulated molecular weight levels of laboratory prepared PMR 2 were examined, in addition to a purchased experimental fully formulated PMR 2 precurser solution. Isothermal aging of graphite fibers, neat resin samples and composite specimens in air at 316 C were investigated. Humidity exposures at 65 C and 97 percent relative humidity were conducted for both neat resin and composites for eight day periods. Anaerobic char of neat resin and fire testing of composites were conducted with PMR 15, PMR 2, and an epoxy system. Composites were fire tested on a burner rig developed for this program. Results indicate that neat PMR 2 resins exhibit excellent isothermal resistance and that PMR 2 composite properties appear to be influenced by the thermo-oxidative stability of the reinforcing fiber

    Transply crack density detection by acousto-ultrasonics

    Get PDF
    The acousto-ultrasonic method was applied to a PMR-15 8-harness, satin Celion 3000 fabric composite to determine the extent of transply cracking. A six-ply 0/90 laminate was also subjected to mechanical loading, which induced transply cracking. The stress wave factor (SWF) is defined as the energy contained in the received signal from a 2.25-MHz center frequency transducer. The correlation of the SWF with transply crack density is shown
    corecore