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FIBER REINFORCED PMR POLYIMIDE COMPOSITES

by

P. J. Cavan and W. E. Winters

SUMMARY

The major objectives of the program were to characterize commercially

obtained PMR-15 polyimide prepreg on several reinfor%ements; develop process cycles

for these materials as well as PMR II polyimide prepreg prepared in-house; and

investigate long term composite performance on several of the above materials.

The excellent performance exhibited by the PMR-15 matrix system, previously well

established in the laboratory, has triggered the production of commercial

materials now beginning to be used in significant quantities. For this reason,

an evaluation of vendor supplied cloth and tape prepreg, as opposed to materials

prepared under laboratory conditions, was timely. The PMR II matrix, a second

generation PMR, utilizes the same reaction chemistry as the PMR-15 system. PMR II

resins have been identified as conferring superior thermo-oxidative stability

while retaining the processability of PMR-15. At this time, PMR II is not a

commercially available prepreg material. PMR II monomer solutions are available

on an experimental basis. Problems associated with the storage and handling of

these solutions were investigated.

The program was conducted in three phases: the selection and acceptance

of vendor prepared glass and graphite cloth and graphite fiber tape prepreg; the

development of die and autoclave fabrication cycles; and the collection of room

and elevated static properties, such as flexure and shear, and long term properties,

viz. isothermal gravimetric analysis at 260 0C (500oF) and 3160C (6000F) and fully

reversed flexural fatigue.

It was learned that commercial prepregging processes provided PMR-15

cloth materials of high quality with the expected molding and property performance

and storage lives out to one year. The unidirectional tape material, at least at

the time of purchase from the vendor employed, requires further investigation

before a fully satisfactory, reproducible system is available. A new autoclave

ray	 v	 '?"lhoi Vowac A-AV : W7. fw.mv



process, employing localized part heating as opposed to heating the entire

autoclave interior volume, introduced a technique that permits the use of

equipment rated for 1770C (3500F) for cures as high as 3160C (600 0F). This

autoclave process, at 1.4 MPa (200 psi), yielded essentially void-free C"MIRZ-glass

and -graphite composites with properties equivalent to die inolded laminates.

Long term isothermal studies out to 2000 hours confirmed the improved

performance of the PMR II system at 316 0C (6000F) in air. Composite studies with

glass fiber reinforced PMR-15 and PMR II revealed an anomalous, accelerated

degradation of composite mechanical properties compared to the performance of

graphite fiber reinforced PMR composites.

Fully reversed bending fatigue studies at room temperature indicated

that graphite fiber composites were clearly superior in fatigue resistance to the

glass fiber reinforced material and that PMR matrix composite systems yield

performance of the same order as composite materials employing other families of

matrices.

Further work is suggested in confirming and defining the accelerated

thereto-oxidative degradation of the S-glass reinforced composites, fatigue

studies and investigation of the PMR II system on other reinforcements.

^W

vi



TABLE OF CONTENTS

Page

1.0 INTRODUCTION	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 1

2.0 PROGRAM MATERIALS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3

2.1	 PMR-15 Vendor Prepreg . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3

2.2	 PMR II	 Prepreg	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 5

3.0 PREPREG CHARACTERIZATION 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 7

3.1	 Purchased PMR-15 Prepregs	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 7

3.2	 PMR II Prepreg Preparation and Characterization . 	 .	 . 11

4.0 COMPOSITE PROCESSING STUDIES 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 15

4.1	 PMR-15 Die Molded Process Development .	 .	 .	 .	 .	 .	 .	 . 15

4.2	 PMR-15 Autoclave Molded Process Development . 	 .	 .	 .	 . 17

4.3	 PMR II Process Development 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 20

^10 DEVELOPMENT OF COMPOSITE DATA .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 21

5.1	 Isothermal Gravimetric Analysis of PMR Laminates 	 . . 21

5.2	 ITGA Test Results and Discussion 	 .	 .	 .	 .	 .	 .	 .	 . 22

5.3	 Reverse Bending Fatigue	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 23

6.0 PROGRAM CONCLUSIONS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 29

7.0 RECOMMENDATIONS FOR FURTHER WORK	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 31

TABLES

FIGURES

APPENDICES

REFERENCES

DISTRIBUTION LIST

vii



LIST OF TABLES

I	 U.S. Polymeric Prepreg Resin and Volatile Contents.

II	 10.2 x 10.2 cm A-S/PMR-15 Acceptance Laminates (Second Lot).

III	 Mechanical Test Results on Die Molded A-S/PMR-15 Acceptance Laminate.

IV	 Material Acceptance Characteristics.

V	 Results of 316 0C (6000F) Flexure Tests on Non-Postcured Die
Molded Laminates.

VI	 3160C (6000F) Flexural and Shear Data on Three PMR II/S-6581
Autoclaved Panels Using NR-050X Lot -87.

VII	 Mechanical Test Data on Die Molded PMR II/S-6581 Laminate.

VIII	 PMR-15 Die Molded Laminate Data.

IX• 	 Short Beam Shear Strength Results on Die Molded S-6581/PMR-15.

X	 Flexure Test Results on Die Molded S-6581/PMR-15.

XI	 Short Beam Shear Strength Results on Die Molded A-S/PMR-15.

XII	 Flexure Test Results on Die Molded A -S/PMR-15.

XIII	 20 x 20 cm Molded PMR -15 Laminate Data.

XIV	 Short Beam Shear Strength Results on Autoclave Molded S-6581/PMR-15.

XV	 Flexure Test Results on Autoclave Molded S-6581/PMR -15.

XVI	 Short Beam Shear Strength Results on Autoclave Molded T-300/PMR-15.

XVII	 Flexure Test Results on Autoclave Molded T-300/PMR-15.

XVIII	 3160C (600 0F) Flexural and Shear Data on PMR II/S-6581 Autoclaved Panel
Using NR-050X Lot -30.

XIX	 3160C (6000F) Flexural and Shear Data on PMR II/Woven T-300 Autoclaved
.Panels Using NR-05OX Lot -30.

XX	 2600C (5000F) Isothermal Weight Losses.

XXI	 2600C (5000F) Isothermal Mechanical Test Data on Autoclave Molded Woven
T-300/PMR-15 Composite..

XXII	 2600C (500 0F) Isothermal Mechanical Test Data on Die Molded
Unidirectional A-S/Pr9R-15 Composite.

XXIII	 2600C (5000F) Isothermal Mechanical Test Data on Autoclave Molded
Woven S-6581 Glass/PMR-15 Composite.

XXIV	 31.60C (6000F) Isothermal Weight Losses.
XXV	 3160C 

(6000F) 
Isothermal Mechanical Test Data on Autoclave Molded

Wove. 5-6581/PMR-15 Composite.

ix	 0#44



x

d
9

LIST OF TABLES (continued)
3

L

XXVI

	

	 316°C (6000F) Isothermal Mechanical. Test Data on Die Molded Woven
S-6581 Glass /PMR-15 Composite.

XXVII	 316°C (6000F) Isothermal Mechanical Test Data on Autoclave Molded 	 j
[[
	 Woven S-6581 /PMR II Composites.

f

X.XVIII	 Four-Point Flexure Strength Results on Thick PMR -15 Laminates.

i`	 XXIX	 Four-Point Flexure Strength Results on Thin PMR-15 Laminates.

XXX	 PMR-15 Composite Stress Levels at 1 x 10 7
 Flexural Fatigue Cycles.

XLXI	 Retained Four-Point Flexure Strength Results from Non-Failed
^	 Fatigue Specimens.



xi

-.r

LIST OF FIGURES

	1	 PMR Polyimide Chemistry.

	

2	 Monomers Used in the Preparation of Second Generation PMR Polyimides.

	

3	 Infra-Red Spectrogram on HFDA Monomer for PMR II.

	

4	 Laminate Showing Surface Defects Encountered with the First Lot
of A-S/PMR-15.

	

5	 Infra-red Spectrogram of Pure Norbornene Anhydride.

	

6	 Infra-red Spectrogram of Ester-acid Solution with Anhydride
Deliberately Added.

	

7	 Infra-red Spectrogram of the Ester-acid Solution Ready for Blending.

	

8	 Autoclave Bag and Blanket-Heated Tool Concept.

	

9	 Temperature Rise of Steel Tool in First Autoclave Run with Heating
Blankets.

	

10	 Photograph of Partially Complete Assembly of Locally Heated
Autoclave Bag.

	

11	 Locally Heated Autoclave Bag Assembly with Clamping Frame in	 j

Place and Vacuum Drawn.

	

12	 Locally Heated Autoclave Bag Assembly Ready to Run.

	

13	 Typical Heating Blanket. Autoclave Cycle Employed in Fabricating Laminates.

	

14	 ITGA Specimens in Chamber Prior to Closing and Installation in Oven.

	

15	 Weight Loss of PMR Composites at 260°C (5000F).

	

16	 Weight Loss of PMR Composites at 316°C (6000F).

	

17	 Reverse Bending Fatigue Fixture with Specimen in Place Mounted on
Fatigue Machine.

	

18	 Reverse Bending Fatigue Specimen.

	

19	 S-6581/PMR-15 Fatigue Specimens Showing Typical Failure Mode.

	

20	 T-300/PMR-15 Fatigue Specimen Showing Typical Damage Locations after Test.

	

21	 Four Different Fatigue Specimen Designs for A-S/PMR-15.

	

22	 Magnified View of Unidirectional A-S/PMR-15 Fatigue Specimen Showing
Damage Locations after Testa -i

	

23	 Reverse Bending Fatigue SIN Curve for Autoclave Molded 5-6581/PMR-15.

	

24	 Reverse Bending Fatigue SIN Curve for Die Molded S-6581/PMR-15.
L

	25	 Reverse Bending Fatigue SIN Curve for Autoclave Molded T-300/PMR-15. r



1.0	 INTRODUCTION

This document constitutes the final report on NASA-Lewis Contract

NAS3-20366, initiated June 28, 1976, and describes the work performed between

that date and October 31, 1977. The major objectives of the program were to

characterize vendor supplied PMR-15 prepreg on several reinforcements; develop

process cycles for these materials, as well as for PNIR II prepreg prepared in-house;

and develop long term composite data on several of the materials.

The PMR (Polymerization of Monomeric Reactants) polyimide resins,

originally developed by NASA-Lewis personnel, employ three stable monomers

(a diamine and two ester-acids) which are mixed in alcohol, applied directly to

the reinforcing fibers and reacted in situ. This technique reproducibly yields

void-free composites and eliminates such classic problems as prepolymer instabil-

ity, residual solvents of a high boiling nature and sensitive, complex processing

procedures (1)(2) . While a large number of government and industry organizations

have evaluated the first generation PMR (PMR-15) in tests and prototype applications,

significant quantities of this material are now beginning to be used. It was,

therefore, timely that a program involving the use of commercially prepared prepreg

and investigating material acceptance approaches, processing cycles, and long term

properties be conducted. The investigation of the second generation PMR (PNIR II)

was also appropriate because of increasing interest in the industry in this experi-

mental but highly thermo-oxidatively stable matrix resin(').

The program was divided into three basic tasks as described below.

Task I - Material Procurement and acceptance

Three different PMR-15 prepreg materials were purchased from a commercial

source; the three reinforcements were Thornel T-300 graphite fiber woven cloth,

S-6581 woven glass cloth and unidirectional A-S Graphite fiber. Evaluations used

to define lot characteristics included such tests as volatiles, resin solids

content, resin flow, molded ply thickness checks, and elevated temperature flexure

property determinations.



Task II - Composite Processin g Studies

In this phase, four prepreg/process combinations with the first

generation PMR (PMR-15) were investigated. Autoclave curing procedures utilizing

low cost, locally heated tooling were developed for both glass and graphite cloth

systems. Properties of die molded glass and A-S laminates were compared to the
autoclaved cloth materials. Additionally, both S-6581 glass cloth and- T-300

graphite fiber cloth were prepregged in-house with a second generation PMR
i

polyimide. An autoclave cycle for PMR II was investigated and evaluated in the

same manner as the purchased prepreg materials. Replicated determinations were

conducted on both postcured and non-postcured laminates in flexure and shear at

both room and elevated temperatures.

Task III - Development of Composite Data

Using the material/process combinations defined in Task II, property 	 j

data collection included isothermal gravimetric analyses (ITGA) determinations at

260°C (500°F) and 316°C (600°F) for various time periods out to 2000 hours on both

PMR matrix type composites. In addition to weight loss data, replicate shear and

flexure determinations were conducted at planned intervals during the ITGA testing.

Additional evaluations during this third phase of the program also included

reverse bending fatigue at room'temperature to determine endurance limits for the

three material/process combinations with first generation PMR.

Experimental approaches, results, data interpretation and conclusions

are described in the following sections.



2.0	 PROGRAM MATERIALS

The following sections describe the basic program materials including

purchased PMR-15 prepreg, PMR II monomers and reinforcements.

2.1	 PMR-15 Vey. or Prepreg

At the beginning of the program, three of the commercial reinforcement

coaters in this country known to have the most extensive experience with the PMR-15

polyimide system were approached with a formal request for quotation to a specifi-

cation defining the materials and quality requirements. On the bases of written

responses and telephone communication, a single source was chosen to supply all

three prepreg materials. This decision was reached on the basis of factors such

as cost, completeness of response, reported monomer purity, and adherence to

preparation techniques developed and published by both NASA and TR{Y on PMR

technology.

U.S. Polymeric, Inc. of Santa Ana, California was the single source

chosen to supply the needed prepregs. Appendix A delineates the purchase order

requirements and specification provided to U.S. Polymeric for manufacture of the

required materials. A deviation from the specification was requested by the

vendor with regard to the tolerance limits on resin solids content. The vendor

requested and was granted a tolerance of ±3% on resin solids content which repre-

sents standard commercial practice in the industry.

Further description of these materials is given below. Characterization

of the prepreg materials is given in Section 3.0.

2.1.1	 PMR-15 Resin

As was noted earlier, the^PMR matrix system is prepared by combining

three monomeric reactants in alcohol and then applying the solution directly to

the reinforcing fiber for subsequent in situ polymerization, rather than employing

a previously prepared prepolymer varnish. The monomers employed and the chemistry

involved in curing are shown in figure 1.

3



A range of formulated molecular weight (FNRV) materials can be used;

the PMR-15 was chosen because of its excellent balance of properties. It is now

common practice to designate the specific FMW system being discussed by elim-

inating the last two zeros from the FMW value and appending the remaining two

digits to the PNIR abbreviation. For example, a PMR system of a 1500 FMW becomes

PMR-15. This convention is followed throughout this report.

The PMR-15 is formulated as shown below.

FMW	 Moles of BTDE	 yioles of MDA	 Moles of NE

1500	 2.084	 3.084	 2.000

The number of moles of the monomeric reactants in each of the monomeric solutions

was governed by the following ratio:

n . (n + 1) . 2

where n,(n + 1) and 2 are the number of moles of BTDE, MDA and NE, respectively.

The formulated molecular weight (FMW) is considered to be the average molecular

weight of the imidized prepolymer that could have been formed if amide-acid pre-

polymer had been synthesized. The equation for FMW is:

FMW = n MW BTDE + 
(n + 1) 

MW 
MDA

+ 2 MW NE - 2 (n + 1)`'VH 
2	 ^

0 + INNCH-OH

where IM 
BTDE' 

NOV 
NIDA' etc. are the molecular weights of the indicated reactants and

by-products (4).

2.1.2	 Unidirectional Graphite Fiber Prepreg

The unidirectional graphite reinforcement chosen was A-S, a 10,000 filament

tow from Hercules, Incorporated. The fiber is treated to enhance shear strength and

has an advertised minimum tensile strength of 2.83 GPa (410 ksi) and a modulus of

221 to 248 GPa (32 to 36 msi).

The prepreg was manufactured by the vendor in a continuous tape form.

Two lots of this material were received, the first in sheets as shown in Appendix A

and the second lot in a roll with a width of 31 cm (12 inches). The first lot was

km,4	 4



rejected because of molding behavior; the second lot was used throughout the

program. Details concerning the rejection are described in section 3.0.

2.1.3	 Woven Graphite Fiber Prepreg

Union Carbide's T-300 fiber, in the form of 3000 filament yarn, was the

material selected for use in woven cloth. While Appendix A shows only one type

of T-300 cloth, two types of T-300 prepreg were, in fact, obtained and evaluated.

The first was prepreg with the Union Carbide epoxy compatible size (UC-309); this

material is identified, in this report, as T-300 (S). The other prepreg used a

23 x 24 inch weave cloth with the size removed by heat cleaning in air at 3710C

(700 0F) for one hour prior to resin application. This material is designated

T-300 (HC). All other requirements were as shown in the Appendix.

2.1.4	 Woven S-Glass Fiber Prepreg

The S-Glass reinforcement for the program prepreg was obtained from

Burlington in a 181 weave with 57 warp ends/inch and 54 woof ends/inch. The

filament is described as a SCG-150-1/2. The cloth carries a designation of S-6581.

The cloth finish was a Burlington I-599 which was originally a development product

identified as GB-855. The I-599 designation has subsequently been changed by

Burlington to I-621.

2.2	 PMR II Prepreg

The second generation PMR resin, PMR II, employs the same reaction

chemistry of PMR-15, but two of the three monomers are different from the PMR-15

system. Figure 2 illustrates the monomers in the PMR II system. The paragraphs

below describe the monomers and the reinforcements used in preparing in-house

prepreg.

2.2.1	 PMR II Matrix System

Based on previous work with PMR II (3)(5) , it was planned to use ethyl

esters and an n = 1.67, i.e., a formulated molecular weight of 1262. The stoichi-

ometries of the three monomeric reactants to be used (figure 2) in this case are

n/(n+l)/2, where n = moles of HFDE, n+1 = moles of PPDA, and 2 = the moles of NE.



The para-phenylenediamine (PPDA) and the diethylester of 4,4 1 - (hexa-

fluoroisopropylidene)-bis (phthalic acid) (HFDE) were purchased (from duPont)

in solution in ethyl alcohol; this system is designated NR-050X.by  duPont. The

5-norbornene-2, 3-dicarboxylic anhydride was purchased from Fisher Scientific

Company and had a melting point range of 2
0
C (3.60F). Anhydrous 200 proof ethyl

alcohol for esterifying the norbornene anhydride was purchased from Publicker

Industries, Inc.

Because of process difficulties encountered with the duPont NR-050X,5

described in section 3.2 below', PMR II composites based upon freshly prepared

monomer solutionp were also'investig.ated.

The norbornene anhydride (2
0
C (3.60F) mp range) compound was obtained

from Fisher Scientific and esterified prior to use. The crystalline p-phenylene-

diamine (Certified Reagent Grade) with a 1 0C (1.80F) mp range was obtained from

Fisher. The HFDE was purchased from Burdick & Jackson Laboratories, Muskegon,

Michigan, in the anhydride form (HFDA). Burdick & Jackson separated HFDA from the

duPont NR-050X using the procedure described in reference (5). Figure 3 shows a

copy of the certification from Burdick & Jackson giving an infra-red spectrum and

a melting point range of 1.5 0C (2.70P) on the 4,41-(hexafluoroisopropylidene)-bis

(phthalic anhydride).

2.2.2	 PNIR II Reinforcements

The woven fabric reinforcements were used in evaluating the PNiR II;

S-6581 and T-300 cloth. The S-6581 was as described in section 2.1.4 with the

I-621 finish from Burlington. The T-300 was the 24 x 24 inch weave, described

in section 2.1.3, with the Union Carbide finish.

Only the S-6581/PMR II was carried throughout the program; the T-300/PMR II

was only taken through Task II, the process development studies. Details of monomer

preparation, prepregging and process development are given below.

ri
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The following sections describe the procedures employed to determine

the acceptability of the purchased PMR-15 prepregs and to prepare PMR II prepregs

as well as static mechanical properties of these materials.

3.1	 Purchased PMR-15 Prepregs

One lot of S-6581 reinforced prepreg was received, two lots of T-300

material (one with finish on the cloth and one without), and two lots of A-S

material. With the exception of the first lot of A-S prepreg, all material was

accepted and used throughout the program. Details of these efforts are discussed

in the following paragraphs.

A first step was a determination of resin and volatile contents. Table I

lists volatile contents and cured resin solids on each of the materials. As can

be seen, the TRW determinations of resin solids indicate that all materials are

high in resin content when compared to the established specification limits. The

certification data from U.S. Polymeric, with the exception of the T-3300 (S), also

report high resin solids values.

It was determined that the high resin solids values resulted from a mis-

understanding by the prepreg vendor; they used a total volatile content (determined 	 {

at 316°C (6000F)) to adjust resin pick-up on the reinforcement. By using this

method, the value determined included an imidization loss (17.10 of total monomer

weight) which was not allowed for in the resin pick-up calculations. As a result ^; 4

of this error, all of their values were higher than planned. TRAY resins solids

contents were determined on cured laminates, molded under conditions to yield an

insignificant amount of flow. Graphite fiber laminate samples were digested with
'.1

sulfuric acid and hydrogen peroxide to determine resin solids and the glass laminate

resin contents were determined by burn-off at 5660  (1050°F), Despite the high

resin content valuer, it was decided to accept the deviated material to avoid

further delay to the program.
i

3.1.1	 A-S/PNIR-15 Prepreg

Laminates were molded from all the prepreg systems received. Initial

molding trials with the first lot of A-S/Pb1R-15 material revealed

7



imperfections on the laminate surfaces. Further 10.2 x 10.2 cm laminates were

prepared using molding pressures of 1.4 MPa, 3.5 MPa, 4.8 NIPa and 6.9 N[Pa (200 psi,

S00 psi, 685 psi and 1000 psi). Imidizing conditions were varied, including three

hours at 1210C (250oF), one hour at 2040C (4000F) and two hours at 2040C (4000F).

All of these laminates displayed the same surface conditions in greater or lesser

amounts, with the low pressure molding, low temperature imidization conditions

producing the greatest density of imperfections. Figure 4 is a photograph (1.7

magnification) of a 10.2 x 10.2 cm laminate showing the type of surface depressions

encountered.

U.S. Polymeric referred to another organization that had used their A-S

prepreg without encountering this problem. A sample of this five month.old material

was obtained and compared with the newly received prepreg. Ten ply laminates of

each material were prepared by imidizing at 121 0C (2SO0F) in the same oven at the

same time. Me laminates were molded in the same die in successive cycles

employing the preform insertion at 232 0C (4SOoF) and a pressure of 3.5 MPa

(500 psi). The newly received material exhibited the same type of surface

impressions observed on all the laminates fabricated while the older material,

obtained from the outside organization, displayed a smooth surface free of any

defects.

One laminate prepared from the new material (No. 772-5) was imidized for

two hours at 204 0C (4000F) and molded under 6.9 MPa (1000 psi) pressure at 3160C

(6000F) for one hour. Triplicate flexure specimens tested at 316 0C (6000F) showed

an average strength of 585 NiPa (84.9 ksi) and a modulus of 56 GPa (8.1 msi). These

values are substantially below what might be expected even though the laminate was

not postcured. The conclusion from these experiments was that some deficiency

existed with the specific resin monomer solution or process parameters employed

in manufacturing the program lot of A-S prepreg.

This first lot of A-S/PMR-15 prepreg was rejected, based on the surface

defects described. The vendor agreed to replace the material at no additional

cost. Discussions were held with the vendor to attempt to identify the problem.

It should be noted that the process used to manufacture the unidirectional

8
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continuous fiber prepreg was different from that used with the woven cloth rein-

forcements, but what potential effect this might have was not clear. The type

of defect observed with the A-S material was last seen on a previous program (6) in

which the problem was ultimately identified as resulting from tri- or tetra-esters

in the benzophenone ester-acid component of the monomer mix. Reference 7 discusses

this in detail. To preclude this problem, it was agreed that the vendor would

limit to three days each the time period between (a) esterifying the benzophenone

component and mixing with the other monomers and (b) applying the mixed monomers

to the reinforcement.

.The replacement shipment of the A-S/PNIR-15 prepreg from U.S. Polymeric

was received in a continuous roll, 30.5 cm (12 inches) wide. The appearance of

the prepreg was good. Fiber collimation, tack, drape and separation from the

release paper were all excellent. U.S. Polymeric reported success with molding

and excellent mechanical properties at both room and 316 0C (6000F). TRW found a

total volatile content of 11.0% and a cured resin solids value of 39.1 w/o vs. the

reported value of 37.7 w/o; these values were judged acceptable.

There was concern about the potential quality of the molded appearance

of panels due to the difficulties experienced with surface defects on the first

lot received from U.S. Polymeric. For this reason, a number of laminates were

molded with different cycles; the resin flow and quality results are shown in

table II. Note that, while certain cycles produced some surface defects, these

were much reduced in intensity from the first lot and, secondly, one cycle, with

an imidization of one hour at 204 0C (4000F) and 6.9 MPa (1000 psi) molding pressure,

yielded defect-free surfaces. Photomicrographs and specific gravity determinations

were used to determine that the laminates were essentially void-free.

Before making the final decision to accept the material, a laminate

was molded (772-47) using the least likely cycle shown in table II; i.e., the

one with a three hour imidize at 121 0C (250oF), and tested at 316oC (6000F) in

short beam shear and flexure. The results can be seen in table III. It was felt

that these values reflected expected strength levels and the A-S/PMR-15 prepreg

was accepted.

L
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33.1.2	 T-300 and S-6581 Prepreg

Multiple 10.2 x 10.2 cm (4 x 4 inch) laminates of both T-300 and S-6581

prepreg materials were molded to determine flow and to provide 316°C (6000F)

flexure specimens, samples for resin solids and microscopic examination. Owing

to the difficulty experienced with the A-S prepreg, it was felt necessary to mold

more than one laminate from each material, using alternate cycles, to observe

performance. Table IV displays the values determined for flow, specific gravity

and thickness per ply on these laminates.

It is significant to note that, while the T-300 laminates molded with

the standard 232°C (4500F) insertion temperature cycle did not yield clear resin

flash, visual observation showed good consolidation and resin rich edges with the

lower molding pressures and extruded resin with fiber wash at the higher pressures.

It was not possible to obtain gel times due to the high viscosity of the extruded

resin. Visual examination and photomicrographs revealed sound laminates of the

T-300 materials as well as the S-6581 system.

Table V shows the results of flexure testing of several of the laminates

discussed above. These unpostcured specimens were put directly into the 3160C

(600°F) preheated Instron oven; no blistering was apparent on any of the specimens.

Specimen failures were predominantly thermoplastic in nature with the appearance

of ply buckling on the compressive side of the specimens. Despite this severe

test cycle, it can be seen that the values reflect sound laminates representative

of what would be expected of materials of these types. The one exception is the

T-300 laminate 772-12; it is not known why this laminate displayed such low values.

The repeat of this laminate, 772-15, produced strength values more appropriate for

this material and in line with other data collected.

	

3.1.3	 PMR-15 Prepreg Storage Life

Both the T-300 and the S-6581 were manufactured on October 20, 1976. The

material was shipped in dry ice to 'TRW and put in storage. The T-300 was kept at

-18°C (00F); the S-6581 was kept at 4 0C (40 0F). On October 19, 1977 panels of both

materials were die molded and inspected ultrasonically for voids. The materials
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still had ample tack and drape. The mold cycle of the 21.6 cm x 21.6 cm x 2.3 mm

(8% x 82 x 0.090 inch) panels was as follows:

a) Oven imidize one hour at 2040C (400oF).

b) Insert in preheated die at 232 0C (4500F) and hold at contact

pressure.

c) Apply 6.9 MPa (1000 psi) and raise to 3160F (6000F) over a

20 minute period.

d) Hold one hour at 3160C (600oF).

The panels were submitted non-postcured for ultrasonic inspection. Both

panels showed clear C-scans,. indicating essentially void-free composites using the

same standards applied throughout the program. While 6.9 MPa (1000 psi) was used

vs. 1.4 MPa (200 psi) as in autoclaving, it seems safe to conclude that, after a

one year storage period, no deleterious monomer effects occurred which interfered

with the fabrication of sound composites.

The roll of A-S material, manufactured on February 17, 1977 and stored

at 40C (400F), was found, in October of 1977, to have experienced blocking; i.e.,

the face of the prepreg fused to the back of the adjacent layer of the non-release

treated side of the spearator paper. This condition prohibited further use of the

material.

3.2	 PMR II Prepreg Preparation and Characterization

First trials with the PMR II prepregging were conducted using duPont's

NR-050X (Lot-144) which contains both PPDA and HFDE monomers. The first step in

preparing the monomer solution was to reflux the norbornene anhydride in ethyl

alcohol to prepare the monoethyl ester in a 79.5 w/o concentration. A reflux time

of three hours was used to obtain complete reaction. To confirm the completion of
this reaction, three infra-red spectrograms were prepared. Figure 5 illustrates

the spectrogram of the norbornene anhydride as received; the circled peak at a

wave number of 1770 was chosen as a characteristic one to be monitored in subse-

quent analyses. Figure 6 shows the spectrogram obtained when excess anhydride was

deliberately mixed with the fully esterified norbornene ester-acid solution; the

11
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presence of the characteristic peak can still be clearly seen. Figure 7 is the	 a

spectrogram from the fully esterified material. As can be seen, only a "shoulder"

remains at the 1770 wave number. This was taken as an indication that the esteri-

fication was complete and that the monomer solution was ready for blending with

the other monomers.

The NR-050X solution was generally received in a precipitated condition. 	 1

In order to put this material back in solution, mild heating was required. This

was done by transferring the NR-OSOX material from the polyethylene bottle received

from duPont to a resin kettle by rinsing with absolute methanol. The quart bottle

contained approximately 1000 gm of the NR-OSOX and 200 grams of methanol were used.

This technique achieved a quantitative transfer of the precipitated NR-050X to

laboratory glassware. The resin kettle was fitted with a refluxing head and the

monomer mix brought to refluxing temperature for just a moment and cooled immediately.

Observation indicated that the material went into solution more quickly and remained

in solution longer with the use of the methanol when compared to straight ethanol

solvent used in previous trials. At this point, the norbornene ester solution was
	

4

added. Done in this way, the final monomer mix yielded a cured resin solids

content of 41.7 w/o.

Both T-300 and S-6581 prepreg were prepared with the PMR II solution by

spreading the required amount of solution onto a pre-weighed section of cloth.

Inspection of the S-6581 material against a back-light showed an even, uniform

coating of the PMR II. Staging trials clearly revealed the prolonged tack life

and volatile retention experienced with the ethyl alcohol carrier solvent as compared r,a

Both die and autoclave molding with this material revealed much higher	 a

flow behavior than anticipated, based on the similarity of the curing mechanism

to PMR-15. First autoclave cycles revealed blisters using a standard process. An

extensive series of experiments was performed to develop a processing cycle suitable 7

for this material. Ultimately, sound test panels were produced with reasonable flow

levels by two methods; one cycle included a 60 minute hold at 260°C (500°F) before 	 j

pressure application and the other required that the laminate be wrapped in porous

to the PMR-15 with methyl alcohol.



While the experiments described above were in progress, a second quantity

(Lot -30) of the NR-OSOX was obtained and investigations initiated on this new lot 	 E

and an earlier sample lot (Lot -87) obtained for internal programs. Both of these

lots exhibited similar behavior, quite different from the high flow lot (Lot -144),

more in line with the expected processing performance. Flow quantity and time of

occurrence during the standard die and autoclave cycles were very like PMR-15.

Based on these tests, it was decided that the initial batch of NR-OSOX was anomalous

and that all further work should be done with the second lot received.

Trial laminates, using a standard autoclave cycle, were prepared; ultra-

sonic inspection indicated that these panels were sound. These panels were then

postcured and submitted for mechanical tests at 316 0C (6000F). As can be seen

from table VI, these values confirm the acceptability of the -30 replacement lot

of NR-050X. This material was used throughout Task H.

Difficulties in prepregging with the NR-050X included precipitation and

variation of color, consistency, appearance and mixing response from batch to

batch and quart to quart within a lot. These problems prompted the investigation

of freshly prepared PMR II solutions. For reasons of superior solvency and

economy, it was decided to use methyl alcohol as a carrier solvent and methyl

esters in the monomer preparation.

The complete PMR II monomer solution was prepared by separately esteri-

fying the two anhydride compounds in methyl alcohol to yield 50 w/o solutions of

the methyl esters and mixing these two materials. The norbornene compound was

esterified as described above. The HFDA was refluxed for two hours to complete

esterification. The PPDA compound is insoluble in room temperature alcohol; it

was added to the mixed esters with enough methyl alcohol wash to represent a

50 w/o mixture. When added in this manner, the PPDA dissolved almost immediately,

yielding a complete 50 w/o monomer solution with no residual undissolved material.

A solution of this concentration represents a cured resin solids content of

41.2 w/o.
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This monomer solution was spread evenly on pre-weighed S-6581 glass

cloth and dried overnight at room temperature. Ten plies of this first prepreg

were stacked, oven imidized at 204,,
0
C (400°F) and die molded at 6.9 MPa (1000 psi).

Resin flow was 4.6 w/o and the laminate appeared quite sound. In fact, the 1.8 mm

(0.070 inch) laminate was translucent-when held up to a fluorescent room lighting

fixture.

A second laminate was molded from this same prepreg in the same way

except using 3.4 MPa (500 psi) pressure; this laminate yielded less than to flow.

The panel was postcured at 316°C (600 0F) and tested in flexure and shear; results

are shown in table VII. The mechanical properties clearly indicate a high quality

laminate.

Storage of the complete solution at room temperature for an eight-hour
period showed no perceptible change. Some solutions were kept longer than this

without precipitation; however, one batch did precipitate overnight and was used

to prepare an experimental prepreg. This prepreg molded without difficulty in the

same manner as the unprecipitated material and yielded a sound laminate. However,

this practice is not recommended because of potential loss of reproducibility..

Once the monomers have been applied to the reinforcement, the prepreg

may be held for some time prior to molding. Samples of PMR II prepreg of both

T-300 and S-6581 were held for approximately two months in 4°C (40 0F) storage and

molded at 6.9 MPa (1000 psi) in a die as described in paragraph 3.1.3. Both panels

(21.6 cm x 21.6 cm x'2.3 mm) were inspected ultrasonically. The S-6581 panel showed

no sonic indications, while the T-300 panel exhibited indications at each of the

four corners of about 3 cm, 2 in size. {while no microscopic sections were taken of

these defect areas, it seems clear the PMt II prepregs do have significant storage

life at 4°C (40°F)

Because of the uniform, excellent handling and good properties obtained,

this approach, i.e., the use of individual monomers, was used throughout Task III

efforts

14



	

4.0	 COMPOSITE PROCESSING STUDIES

Task II was centered on developing processing cycles for the die and

autoclave molding of both PMR-15 and PMR II prepregs. The specific material/process

combinations studied included:

PMR-15/A-S	 Die Molded

PMR-15/S-6581

PMR-15/S-6581	 Autoclave Molded

PMR-15/T-300	 it

PMR II/S-6581	 if

PMR II/T-300	 if

Laminate evaluation consisted of room temperature and elevated mechanical

properties both before and after postcure.

	

4.1	 PMR-15 Die Molded Process Development

Based on previous experience, the molding of small laminates for

materials of small test laminates, it was decided that a molding pressure of

3.4 iNiPa (500 psi) was adequate when used on S-6581 prepreg that had been imidized

at 1210C (2500F) for three hours.

Three large panels of the S-6581 glass cloth/PMR-15 were then fabricated

in a closed die. The warp oriented laminates were 10 plies thick by 21.6 x 21.6 cm

(8.5 x 8.5 inches). The prepreg stacks were oven imidized for three hours at

1210C (2500F) prior to insertion in a preheated die at 2320C (4500F). They were

held at this temperature for 10 minutes under contact pressure, after which the

pressure was increased to 3.4 MPa (500 psi) and the temperature brought to 3160C

(6000F) in a 20 minute period. After reaching 3160C, the parts were held for one

hour before cooling.

The panels were then cut in half and one half of each panel postcured

at 343
0
C (6500F). Postcure was accomplished by sandwiching the panels between

glass fabric with a light weight on top; the 343
0
C (6500F) temperature was achieved

in a four-hour period and the parts held at this temperature overnight (16 hours).

Table VIII lists the weight losses experienced in postcure as well as the resin

t^j.	
r
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flow observed during fabrication, laminate thicknesses and densities. All panel

halves were submitted for ultrasonic examination. The laminates were inspected

at 5 MHz using varying sensitivities. A review of these C-scans led to the

choice of laminate number 772-30 for further evaluation. These panel halves,

as-molded and postcured, were machined into specimens for short beam shear and

flexure testing, resin content by burn-off, and microscopic examination.

As noted in table VIII, the specific gravity of 772-30 was 1.90. Using

this value and the resin solids (33.5 w/o) for this panel, the void content was

calculated to be 0.3 v/o. The microscope specimens, chosen from the C-scan at

various points, were used to establish standards for subsequent ultrasonic tests.

Mechanical test data collected are shown in tables IX and X. A review

of the data in these tables shows that the non-postcured room temperature values

are equivalent to those seen in the industry with similar laminates using the

best epoxy matrices. Postcure can be seen to reduce room temperature performance

but provides improved resistance to the elevated temperature environment. This

behavior has been observed with high strength graphite reinforcements and was not
4

unexpected. In general, it is felt that these properties reflect high quality

laminates and an excellent combination of matrix and reinforcement.

As was noted above, the second shipment of A-S/PMR-15 prepreg was

accepted and a cycle chosen for die molding. Using this cycle, three panels 	
3

21.6 x 21.6 cm (8.5 x 8.5 inches) were molded. The cycle used included a one hour

oven imidization at 204°C (400 0F), insertion into a preheated die at 232°C (4500F)

with a 10 minute hold, the application of 6.9 MPa (1000 psi) pressure, and an

increase to 316°C (600 0F) in 20 minutes; half of each of the panels was postcured

at 343°C (650°F) for 16 hours. The characteristics for each of the panels molded

are shown in table VIII. Ultrasonic C-scans and photomicrographs were used to

determine that the panels were void free. No change in ultrasonic response was

noted after the 16 hour postcure.

The mechanical test results from the selected panel, 772-50, in both

postcured and nonpostcured condition are shown in tables XI and XII. It is felt

that the valuesobtained reflect a sound laminate and are representative of the

fiber volume and reinforcement type.

16



4.2	 PAIR-15 Autoclave ?Molded Process Development

In anticipation of the autoclave development portion of the program,

considerable thought had been given to a suitable vacuum bag-tool arrangement.

Figure 8 shows a schematic of the concept selected, employing electrically heated

blankets and a cured silicone rubber bag, sealed by a silicone rubber 0-ring.

The use of the locally heated tool would permit the attainiment of the 316°C

(6000F) cure temperature at a controlled heating rate, and provide a system in

which only the tool had to be heated instead of the entire autoclave volume. It

was felt that the 0-ring mechanism would be positive and permit rapid assembly

and removal. It was hoped that multiple uses of the bag and 0-ring could be

obtained. Autoclave dry runs (without prepreg material present) were made to

determine the temperature resistance of the silicone rubber bag and 0-ring and

to confirm the operation of the autoclave temperature and pressure systems. The

system operated as planned.

Since all autoclave systems seemed suitable, a first trial run was

attempted using a 10.2 cm x 10.2 cm laminate, each of PMR-15/T-500 (sized) and

the PMR-15/S-6581 glass prepregs. The unimidized prepreg stacks were placed on

the tool, subjected to a vacuum of about 75 mm of Hg and the temperature brought

to 3160C (600°F) as shown in the curve plotted in figure 9. Twenty-seven minutes

after turning on the heat, the mandrel had achieved a temperature of 246°C (475°F)

and full vacuum was applied and the autoclave pressurized. As can be seen from

the curve, 10 minutes later a pressure of 1.3 MPa (195 psi) was attained. A sharp

jump in temperature at about 160 minutes can be seen on the curve in figure 9.

It was noted during the course of this run that the maximum temperature obtainable

was 302°C (575 0F) at the full autoclave pressure. It was assumed that a thermal

balance was achieved between heat input and that dispersed to the interior of

the autoclave. By reducing the autoclave air pressure to 0.7 MPa (100 psi), the

temperature climbed to 316°C (6000F) without any change in temperature controller

settings. This was apparently due to the reduced conduction of heat in the less

dense air.

These two trial, parts appeared sound when visually examined. Ultrasonic

C-scans were obtained on both laminates. Based can the C-scans, specific gravity
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measurements and microscopic examination, both of these laminates were deter-

mined to be sound and essentially void free.

The problem of attaining 310C (6000 F) was subsequently resolved by

changing from the steel tool used during this run to a slightly smaller aluminum

tool. The steel tool was 13 mm (0.5 inches) thick, with the other dimensions

being 30.5 x 61.0 cm (12 x 24 inches). The aluminum too! was 9.5 mm thick by

28.6 x 61.0 cm (11-1/4 x 24 inches). The larger steel tool provided excess stock

not needed for vacuum sealing which acted as a cooling fin. By going to the

narrower tool, this fin was eliminated and the squired 316 0C (6000F) maximum

temperature was thereafter easily reached.

Figures 10 through 12 shown photographs of the assembly of the autoclave

bagging system with the heated blankets. While the system., as shown, was success-

ful, minor changes were made subsequently to improve convenience and lower cost.

For instance, it was determined that a maximum of three runs could be made with

the silicone rubber (Cohrlastic . 500).b .ag and 0-ring' after which difficulty was

encount .ered. The silicone . rubb.er bag was-.discarded_in.favor of duPont Kapton film,

which. was replaced with each run.

Two other approaches were tried for the outer seal: (1) the use of a

conventional sealing type method employing an A800 material (Airtech International,

Inc., Torrance, California) good to 4270C (8000F), and (2) the use of a pair of

flat silicone rubber gaskets to replace the 0 -ring and the lower sealing frame.

This later technique proved to be quite suitable and was used throughout the

remainder of the program.

Using the system as just described, a number of 20 x 20 cm laminates

of both the PAIR-15 /S-6581 and the PMR-15 /T-300 material were manufactured. In

each case, unimidized material was stacked on the tool and bag ged in the manner

described above. The cycle empl soyed is shown graphically in figure aoy,.^

All of the laminates appeared sound and well consolidated. Using

laminate specific gravity values and the resin solids va_ lues`--de ermined on the

incoming prepreg, the void contents on the 	 S-b581 laminates were 0.5 v/o.

In the case of the T-300 laminates, two autoclave runs were made with paired

. ^	
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laminates of sized and heat cleaned material. These composite specific gravities

indicate a void consent of 0 to 2.6 v/o on the sized T-300 and 1.3 v/o on the

heat cleaned cloth laminates. Table XIII lists the characteristics for these

laminates. As can be seen from the specific gravity values, uniformity among

multiple runs was good. Photomicrographs and ultrasonic C-scans, with few

exceptions, indicated essentially-vdid =free composites.

One panel was sectioned from the three fabricated of each material and

half postcured. For each material, both the postcured and unpostcured halves

were machined into specimens for triplicate testing of short beam shear and

flexure at room temperature and 3160C (6000F). The results for the autoclaved

PMR-1S/S-6581 material are shown in tables XIV and XV. Note that, an addition to

the selected panel (772-36) which was molded with a caul plate on top of the

laminate, postcured laminate data for 772-35 molded without a caul plate are

included. While the short beam shear values are comparable for the two laminates

in the postcured condition, the flexure values for the laminate molded without

the caul plate (with the bleeder imprinted surface) are significantly lower in

flexure strength.

In considering the values for panel 772-36, there seems to be a signifi-

cant drop in room temperature shear strength from nonpostcured to postcured, but,

in general, the values seem quite good. With regard to an important characteristic,

strength at 3160C (6000F), the postcured autoclave panel values compare very well

with the postcured die molded values obtained with this same prepreg lot reported

previously and summarized below:

Short Beim
Flex Strength Shear Strength

Autoclave Molded, MPa	 447 (64.8 ksi)	 34 (5.0 ksi)

Die Molded, MPa	 440 (63.8 ksi)	 3S (5.1 ksi)

Tables XVI and XVII show all the data collected on the autoclaved

T-300/PMR-15, including both the sized and heat cleaned T-300 prepregs. Little

can be said about the absolute levels of the values, except that they reLlzct

what the reinforcement is capable of providing,'indicating sound laminates.

Strength retention at 316 0C (600 0F) seems quite good. Little difference can be

ORIGINAL PO
P 15

19 OF POOR QUALITY!



seen between the sized or heat cleaned reinforcement. However, the sized material

exhibits slightly better strength retention when comparing the high temperature

performance of the postcured laminates. For this reason, it was decided to conduct

the remainder of the program with the sized T-300 material.

4.3	 PMR II Process Development

As was noted in Section 3.2, considerable effort was expended in

establishing process parameters for the PMR II material. Tables VI and VII show

autoclave and die molded properties, respectively, on S-6581 glass cloth. Using

this experience and the autoclave cycle developed for PMR-15 (figure 13), both

S-6581 and T-300 cloth prepregs were prepared using the NR-050X base. Three

20 x 20 cm panels of each material were autoclave molded, cut into two sections

and half of each laminate postcured at 343 0C (6500F). Target resin solids contents

of 35 and 40 w/o (equivalent to the PMR-15 materials evaluated) were achieved for

the S-6581 and T-300, respectively. The T-300 cloth had the UC 309 finish applied

by Union Carbide and tke S-6581 glass cloth had the Burlington I-621 polyi.mide

compatible finish.

Ultrasonic inspection and microscopic examination indicated that the

composites were essentially void free. Specific gravities of the selected panels

were 1.94 for the S-6581 and 1.58 for the T-300; slightly higher than comparable

PMR-15 laminates due to the higher specific gravity of the fluorine bearing resin.

Thicknesses of the laminates were 2.0 mm, giving a per ply thickness of 0.23 mm

(9.1 mils) for the S-6M and 0.43 mm (16.8 mils) for the T-300 cloth.

Laminate flexure and short beam shear specimens were machined from both

noapostcured and postcured halves tested and at 316 0C (6000F). All the data

collected are shown in tables XVIII and XIX. A review of the test values indicates

that, in general, the strength and modulus levels compare well with PMR-15.

However, the high temperature shear and flexure values of the PMR II in the non-

postcured condition are much higher than those realized with PMR-15 on either

reinforcement in the non-postcured condition and are equivalent to the postcured,.

PMR II laminate halves. From these results, it can be concluded that the PMR II

matrix system is suitable for use at 316 0C (6000F), at least in the short term,

without the need for postcure.
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5.0	 DEVELOPMENT OF COMPOSITE DATA

Using the processing techniques developed in the previous taks, a series

of laminates were prepared, inspected and evaluated for fatigue characteristics in

bending, thereto-oxidative stability by isothermal gravimetric analysis (ITGA), and

residual strength dterminations. The following sections describe procedures, test

methods and results.

	

5.1	 Isothermal Gravimetric Analysis of PMR Laminates

A series of six different material/process combinations were examined

with this technique. Those evaluated, and the temperatures employed, are shown

below:

Resin Reinforcement

PMR-15 T-300(S)

` A-S

i
5-6581

PMR- I I Y

Fabrication Process

Autoclave Molded

Die

Autoclave

Autoclave

Die

Autoclave

Evaluation Temperature Exposure Time

2600C (500o F)	 1000 hr

1000 hr

2000 hr

316°C (6000F)

Multiple laminates of each kind, shown in the table above, were prepared

using the procedures described in the preceding sections. All laminates were

ultrasonically inspected after postcure at 3160C (6000F). Those selected for use

were determined to be essentially void free; this was confirmed by photomicrographs.

Additionally, triplicate analyses for resin content were conducted. All laminates

were approximately 20 cm x 20 cm x 2.3 mm (8 x 8 x 0.090 inches). These were cut

into plaques approximately 5 cm x 20 cm for use as samples in the exposure ovens.

The plaques were withdrawn at the pre-selected intervals and machined into mechanical

test specimens.

The test plaques were supported in stainless steel wire racks and placed

in a closed inner oven chamber (see figure 14). This inner chamber, with a volume

of 14 liters, was fitted with a coiled metal tube, fitted on the bottom of the

chamber, with small holes drilled on 2.5 cm centers through which air was metered

from a compressed air tank. A flow rate of 100 ml/min was maintained with calibrated
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flowmeters. The compressed air was hospital grade with a dew point temperature

of -590C (-750F). Temperature inside the chamber was monitored with a calibrated

thermocouple during the entire test and oven temperature adjusted to yield the

target temperature.

5.2	 ITGA Test Results and Discussion

Weight loss data from the 260 0C (5000F) exposures are shown in tabular

form in table XX; these data are plotted in figure 15. Retention of flexure

strength, modulus and short beam shear strength is shown in tables XXI through XXIII.

As can be seen from a review of the data, both strength and weight losses are

moderate. No particular comparative trends among the three materials evaluated at

this temperature are apparent, although the performance of the glass reinforced

material out to 2000 hours is quite good for this length of exposure.

The 3160C (6000F) ITGA data are presented in figure 16 and tables XXIV

through XXVII. An examination of the data leads to the identification of two

significant observations: a) superior performance of the PMR II matrix system and

b) equivalent performance of the die and autoclave molded S-6581 composites.

Both the tabular data and the curves in figure 16 show that the weight

loss of the PMR II system is markedly lower than the PMR-15 material. Addition-

ally, the PMR II curve seems to be leveling out at 2000 hours, rather than showing

the sharp decline of the PMR-15 composites. The superior performance of the PMR II

materials is also borne out by retention of flexure and shear strength out to

2000 hours, whereas the PMR-15 laminates were too degraded to warrant testing

after 1000 hour exposures.

The weight loss and mechanical property test values of the PMR-15/S-6581
laminates prepared by die and autoclave molding can be seen to coincide within the

limits of experimental error. It is felt that this confirms the high quality of

the autoclaved panels and establishes the fact that the PNIR-15 system can be

successfully autoclave molded at a pressure of 1.4 MPa (200 psi).

Another trend observed in the 3160C (6000F) ITGA data in general is that

the percentage weight loss and property retention of the S-glass reinforced PMR-15

composites seems markedly inferior to values previously reported(') 
(6) with the
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PMR-15 matrix system on HM-S high modulus graphite reinforcement. Control

specimens of HM-S/PMR-15 were carried as a control in the 316°C (600°F) ITGA

exposures (see table XXIV) conducted on this program and the weight loss of these

specimens showed values reproducing those of references 1 and 6. It is therefore

assumed that the more rapid degradation shown by the S-glass reinforcement

composites is related to the effect of this type of reinforcement. Evidence of

the degradation of the glass reinforcement is shown by the high loss of

PMR II/S-glass mechanical properties at low levels of composite weight loss at

31600 (6000F) (see tables XXIV and XXVII). Because of the inert nature of the

glass reinforcement, such an effect was not anticipated. No back-to-back

performance comparisons between composites with these two reinforcements have

been seen to confirm these observations. More work is needed to confirm the

accelerated degradation Effect and isolate the phenomenon before final judgments
can be made.

5.3	 Reverse Bending Fatigue

Limited fatigue data on the type of materials discussed in this program

are available. The literature reviewed indicated that there are no data on

composite performance determined in fully reversed bending fatigue in which both

ends of the test specimens are supported. For these reasons, it was decided to

collect such data on several types of the PMR-15 composites investigated.

5.3.1	 Test Methods

The test equipment selected to perform the room temperature fatigue

studies included a bending fatigue fixture from SATEC Systems (Grove City, Pa.)

coupled with a Baldwin SF-1-U universal fatigue machine. The SATEC fixture

(figure 17) clamps the test specimen on both ends and applies a uniform bending

moment between the two loading pivots over the entire free length of the specimen.

A dynamic alternating load is produced by a revolving eccentric mass giving a

fully reversed bending cycle. Using this device, a given load is pre-set and then

the motor speed is gradually brought up to produce a load application frequency of

1800 cycles per minutes. As the test continues, specimen degradation occurs with

an accompanying increase in deflection but with the load at the same level. When

the deflection becomes excessive, a microswitch is contacted, the machine is
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automatically shut down and a cycle counter is tripped, recording the elapsed

number of cycles. One cycle is counted as one fully reversed excursion; i.e.,

top and bottom specimen surfaces each receive one tension and one compression

exposure.

The standard SATEC fixture was modified in two ways: (a) the free

specimen length between grips was reduced from 7.62 cm (3 inches) to 5.08 cm

(2 inches) and (b) the minimum length between pivot points was reduced from 7.62 cm

to 5.08 cm. This was done to limit specimen thickness anticipated owing to the

significantly lower modulus realized with the composite materials compared to that

of the metal specimens ordinarily run with the standard fixture design. The

equations relating thickness to specimen stress, modulus and machine load were

provided by SATEC and are shown in Appendix B.

Figure 18 shows the specimen design for use with the fixture. The

reduced gage section shown is a requirement to induce failure away from the grips.

Since a pure moment is induced into the specimen, the load is the same all along

the free specimen length between the grips and, using a straight sided specimen,

failure would invariably occur at the point where the grips contact and weaken the

specimen. Also shown in figure 18 are the nominal thicknesses for each of the

materials to be evaluated. Thicknesses were selected on the basis of material

properties and machine load and deflection limitations as described in Appendix B.

First trial runs with the new fixture using program composite materials

showed premature failures. Additionally, visual observation seemed to indicate

that, on the rise to operating frequency during startup, some excessive deflection

of the specimen was encountered due to secondary resonance modes in the fixture.

To confirm this a specimen was fitted with strain gages and strain monitored during

startup. This technique quickly revealed that, in fact, excessive deflection of

the specimen was experienced; momentary excursions of this type could induce

premature damage in the specimen, leading to failure at an accimulated cycle level

less than anticipated.

To eliminate this excessive deflection phenomenon, a fixture damping

technique was developed to inhibit deflection until the maximum cycling frequency

24



(1800 cycles/min.) was achieved. Multiple runs with the strain gage specimen,

at various loading levels, demonstrated that the damping procedure was effective

in eliminating these anomalous excursions and that a stable dynamic condition

could be achieved by the use of the method.

Using the fixture damping technique, a number of PMR-15/T-300 cloth

specimens were taken to failure at high loads to observe machine performance acid

failure locus. These-preliminary runs established that the specimen design was

appropriate and that the fixture was operating properly.

In order to establish base line flexure strength values for comparison

with fatigue failure stresses, a series of four-point flexure tests were conducted

on the program materials in both reduced and straight sided configurations on both

"thick" (approximately 6 mm) and "thin" (approximately 2 mm) specimens. In testing

the thick specimens, the inner span was set at the free specimen length (7.1 mm)

of the fatigue fixture and the outer span adjusted to give a span-to-depth ratio in

the range of that suggested by the ASTM method. The thin specimens were subse-

quently tested at approximately the same span-to-depth ratio. Tests were conducted

on the Instron Tensile Testing Machine observing the usual standard practices.

Beam width, in the case of the reduced gage section, was used in the calculations

as the narrowest width.

5.3.2	 Test Results and Discussion

Panels were fabricated of each of the materials to be evaluated in

fatigue. Included were the following material/process combinations:

a) A-S/PMR-15	 Die Molded Unidirectional

b) T-300 Cloth/PMR-15 	 Autoclave Molded

c) S-6581 Cloth/PMR-15	 Die Molded

d) S-6581 Cloth/PMR-15 	 Autoclave Molded

All of the panels were fabricated using the processes developed in the first phases

of the program and described above. It should be noted that the standard autoclave

process was used without alteration to successfully mold panels 20 cm x 20 cm x

7.3 mm (8 x 8 x 0.288 inches). After postcure at 316 0C (600 0F) for 16 hours, panels

were machined into flexure and fatigue specimens.
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The results from the four-point flexure testing of program materials in

both thickness and gage length configurations are shown in tables XXVIII and XXIX.

No clearly significant trends can be observed in comparing the two thicknesses

and gage configurations among the materials tested. There also appear to be no

differences between the three-point flexure results reported earlier and the

four-point data.shown in these-two tables. For this reason, the'base line average

for use in evaluating flexure fatigue performance was constructed by using both

three-point flexure data and the values from four-point flexure tests with the

straight sided gage sections. In the case of the S-6581 composites, both auto-

claved and die molded laminate values were combined for a grand average. These

baseline flexure values for the S-6581/PMR-15 and T-300/PNIR-15 were 581 MPa

(84.3 ksi) and 669 NiPa (97.0 ksi), respectively.

Figures 19 and 20 show failed fatigue test specimens of S-6581 and T-300

reinforced composites. These represent typical failure modes observed for these

materials. Note that the failure locus is within the gage section and is associated

with the surface of the specimen. These were judged appropriate types of failure

given the specimen design and loading mechanism applied.CP

Difficulty was encountered with the unidirectional A-S composites.

Figure 21 displays the different specimen configurations evaluated with the uni-

directional A-S/PMR-15 material. Three specimens employed. a completely unidirectional

layup; a straight sided specimen, one with a reduced gage section, and a tabbed 	 i

specimen. The fourth specimen type was a cross-ply type with an outer surface angle

ply. Failure modes observed included axial splitting, failure at the grips and, 	 s
3

in the case of the tabbed specimen, excessive heat buildup at the bond line and

adhesive degradation within minutes of test initiations. Figure 22 displays both

the failure at the grips and cracks across plies at the edges of the specimen

associated with the reduced gage section radius. Since all of these failure modes

observed with the unidirectional. A-S were considered to be unacceptable, further

testing was discontinued. x

Figures 23 through 25 show the S/N curves plotted from the fatigue data

assembled. Table XXX is a summary of composite fatigue behavior at the ten million

cycle mark. Figures 23 and 24 represent a further confirmation of the similar



behavior of the autoclave and die molded S-6581/PMR-15 composites. As can be

seen from table XXX, the ten million cycle stress levels are very similar, with

the die molded specimen average showing a slightly higher value (11%) and a

slightly narrower spread (17 NIPa vs. 19 MPa). Figure 25, the S/N curve for T-300

reinforced PNIR-15, shows the improved performance due to the carbon fiber rein-

forcement when compares- to the glass cloth specimens. Table XXX shows a 1 x 107

cycle stress level of 29-38% vs. 11-16% for the glass reinforced materials.

The percent of ultimate stress level at 1 x 10 7 cycles for the materials

tested did not deviate significantly from what might be expected. Harris (8) , in

discussing cyclic flexural tests of carbon fiber reinforced plastic (cfrp) indicates

that, "They suggest that a realistic value for the fatigue strength at I x 106 cycles

of cfrp in bending would be approximately 65% of the static strength for repeated

bending in one direction and as low as 30% for fully reversed bending." The data

in table XXX show a range of 29 to 38% of ultimate at  x 10 7 .cycles for the T-300

reinforced composites tested. Mettes and Lockwood (9) report that an S-glass

cloth/epoxy system showed a stress level of 20.0 to 22.5% of ultimate tensile

strength after 1 x 10 7 flexure cycles. These flexure fatigue tests were run on a

cantilevered specimen in accordance with the ASTM-STD-91 method for metallic

materials. In general then, it seems that the reinforcement type and form played

a larger role in fatigue performance than the matrix system.

A final test series consisted of an examination of retained four-point

flexure strength after fatigue test. Table XXXI presents the data collected. As

can be seen, with the exception of one S-6581 specimen, strength after fatigue

testing at the stress and cycle levels shown is remarkably good.
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Specific conclusions on such things as processing detail and material

properties are presented in the body of the text. The conclusions below represent

broader statements related to the program objectives and the more general charac-

teristics of the PMR polyi.mide composite systems evaluated.

1) High quality PMR-15 prepreg with woven graphite or glass fiber rein-

forcement can be manufactured on a commercial basis and can be stored under

refrigerated conditions for at least one year. Continuous graphite fiber /PMR-15

tape prepreg from the one vendor investigated was less than satisfactory in terms

of reproducibility and indicates that further study of a prepregging process for

this type of material is required.

2) PMR II prepreg can be prepared successfully from individual monomers

or from a commercially available base containing two of the three monomers, although

this latter approach (combined monomer base) is more involved and left a lack of

confidence in reproducibility. The PMR II materials were found to process, both

in a die and an autoclave, with the same ease az:d fabrication cycles as PMR-15

materials and were determined to have at least a two-month refrigerated storage

life. It appears that the PMR II system does not require a postcure if used at a

temperature of 316°C (600 0F) or lower.

3) The use of the locally heated autoclave tool approach, as opposed to

the convection heating of the complete inner volume of the autoclave, was demon-

strated to be an energy-efficient, quick, controllable process. The process

reproducibly produced high quality, essentially void-free PMR-15 and PMR II

composites at 200 psi, on both glass and graphite cloth reinforcements, with

equivalent properties to composites molded in a closed die at much higher pressures.

4) Isothermal gravimetric analysis at 316°C (600 0F) and the subsequent

mechanical test of exposed specimens clearly revealed the superior thermo-oxidative

resistance of the PNIR II matrix system over PMR-15 on. the same reinforcement.

Comparison of property retention and weight loss values of the PMR-15 and PMR II

matrices on S-glass reinforcement to data previously collected with the PNIR-15 on

G MO29	 ,;ri'
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high modulus graphite fiber reinforcement showed a highly accelerated degradation

of the glass reinforcement nio erials, reflecting the need for further studies in

this area.

5) Fatigue tests in a fixture which clamped both ends of the specimens

were successfully conducted establishing a satisfactory specimen and the utility

of the test method when used with woven cloth composites. The method was not a
suitable for unidirectionally oriented composites. The data demonstrated the

influence of the reinforcement in composite fatigue performance and the nominal

fatigue behavior of the PNIR-15 matrix composites.	 1
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7.0	 REMSIENDATIONS FOR FURTHER {YORK

1) The improved thermal performance of the PNIR II system over the

PNiR 15 matrix, coupled with an equivalent ease of fabrication, points out the

attractiveness of the material and the need for further data accumulation with

the PMR II system; specifically, on other reinforcements, such as carbon and

graphite fiber, and in alternate forms, e.g., molding compounds.

2) The discrepancy noted between the thermal performance of PMR-15

composites reinforced with graphite and glass indicates a strong need for further

work in the area of defining the contribution of the reinforcement to composite

thermo-oxidative stability and the mechanism of thermo-oxidative degradation of

fiber reinforced composites.

3) The difficulties experienced with continuous graphite fiber prepreg

highlights the importance of identifying or establishing appropriate prepregging

methods.
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TABLE I

U.S. POLYMERIC PREPREG RESIN AND VOLATILE CONTENTS

Material/`Pest 	 Specification	 U.S. Polymeric Cert. 	 TRW Determined Values

A-S/PMR-15 (1st lot)
Vol, %	 11-15	 11.8	 10.3
Cured Solids, %	 30.6-36.6	 38.5	 38.0

A-S/PMR-15 (2nd lot)
Vol, %	 11-15	 16.0	 11.0
Cured Solids, %	 38.0(c)	 37.7	 39.1

T-300(a)/PMR -15
Vol, %	 11-15	 12.3	 13.2
Cured Solids, %	 31.1-37.1	 35.8	 42.0

w	 T-300 (h)/PMR-15
Vol, %	 11-15	 14.7	 -
Cured Solids, %	 31.1-37.1	 40.0	 40.2

S-6581/PMR-15
Vol, %	 11-15	 10.3	 9.4
Cured Solids, %	 24.5-30.5	 34.9	 34.6

NOTES: (a) Resin applied to cloth as received from weaving vendor.
(b) Woven cloth heat cleaned prior to resin application.
(c) Specification value was changed to correspond to other materials for

comparison purposes.



TABLE II

10.2 x 10.2 cm A-S/PMR-15 ACCEPTANCE LAMINATES
(SECOND LOT)

Laminate Imidization Mold-Pressure
No. Time/Temp. MPa (psi) w/o Flow Appearance

772-42 3 hr/121
0
C (250°F) 3.4 (500) 10.0 Some surface defects

772-44 1 hr/204°C (400°F) 3.4 (500) No flash Trace of defects

772-45 2 hr/2040C (4000F) 6.9 (1000) No flash Good

772-46 1 hr/204°C (4000F) 6.9 (1000) 2.0 Est. No flaws

'.	 772-47 3 hr/121
0
C (2500F) 3.4 (500) 4.3 Few defects

NOTE: All panels were placed in a die preheated to 232°C (450 0Fa-and held
10 minutes before pressur6 application and brought to 316 C (6000F).
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TABLE III

MECHANICAL TEST RESULTS ON DIE MOLDED A-S/PMR-15
ACCEPTANCE LAMINATE

316°C (6000F) Short Beam Shear 316°C (6000F) Flexure

Strength Modulus

MI'a Ksi MPa	 Ksi GPa Msi

Panel 772-47 48 6.9
As-Molded 47 6.8 765.3	 111.0 84 12.2

48 6.9 759.1	 110.1 75 10.9	 r'

Avg	 48 6.9 762.6	 110.6 80 11.6

Panel 772-47 59 8.6 4

Postcured 58 8.4 1064	 154.3 96 13.9
60 8.7 1149	 166.6 99 14.4

Avg	 59 8.6 1106	 160.4 98 14.2

NOTE:	 Mold cycle:	 oven imidize 3 hours at 121 0C (250°F), insert in preheated die
2320C (450°F), 3.4 MI'a pressure, one hour at 3160C (6000F), 4.3 w/o
flow.	 Postcured at 3430C (6500F) for 16 hours.
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TABLE IV

MATERIAL ACCEPTANCE CHARACTERISTICS

Imidization (b) Thickness
Time/Temp. Mold Pressure Flow mm/ply

Reinforcement Lam. No. (a) hr/oC (OF) MPa Psi % Sp. Gr. (mils/ply)

T-300 (S) 772-6 1/204 (400) 1.4 200 0.1 1.52 0.396 (15.6)

772-7 2/204 (400) 6,,9 1000 0.0 - 0.381 (15.0)

772-18 0/0(c) 1.4 1200 1.6 - 0.396 (15.6)

772-19'- 2/204 (400) 1.4 200 0.9 - 0.401 (15.8)

T-300	 (11C) 772-11 1/204 (400) 6.9 1000 0.0 1.56 -

772-12 1/204 (400) 1.4 200 0.0 1.53 0.396 (15.6)
a

772-15 1/204 (400) 1.4 200 0.0 - 0.384 (15,1)

S-6581 772-20 1/204 (400) 1.4 200 0.5 1.88 0.226 (8.9)

S-6581 772-24 1/204 (400) 6.9 1000 3.5 1.92 0.206 (8.1)

(a) All laminates were 10.2 x 10.2 cm (4 x 4 inches).

(b) Unless otherwise noted, laminates were imidized as shown, inserted in 2320C (4500F) preheated die,
held 10 minutes at contact pressure, subjecteddto pressure shown and brought to 316°C (600 0F) in
20 minutes and held one hour.

(c) This laminate was installed unimidized in a cold die and press and brought to 3160C (6000F) at
5.60C/minute (100F/min,) and held one hour at 3160C (6000F). Pressure was applied at 2540C (490oF).

(d) Laminate was imidized as shown, inserted in a preheated die at 3160C (6000F), held 60 seconds, and
pressure applied.

. n.



TABLE V

RESULTS OF 316°C (600oF) FLEXURE TESTS ON NON-POSTCURED

DIE MOLDED LAMINATES

Imidization
Laminate	 Time/Temp.	 Mold Pressure Flexure Strength Flexure Modulus

Reinforcement	 No.	 hr/'C (OF)	 MPs	 Psi	 MPa	 Ksi	 GPa	 Msi

T-300 . (5) 772-6 1/204 (400) 1.4 200 432 62.7 40 5.8

T-300 (S) 772-7 2/204 (400) 6.9 1000 381 55.2 37 5.4

T-300 (11C) 772-11 1/204 (400) 6.9 1000 426 61.8 47 6.8

T-300 (11C)) 772-12 1/204 (400) 1.4 200 117 17.0 - -

T-300 (11C) 772-15 1/204 (400) 1.4 200 450 65.3 41 6.0

S-6581 722-20 1/204 (400) 1.4 200 437 63.4 23 3.4

NOTE: Values shown represent average of three determinations.



TABLE VI

3160C (600oF) FLEXURAL AND SHEAR DATA ON THREE PMR II/S-6581 AUTOCLAVED
PANELS USING NR-050X LOT -87

Flexure Strength (a)	 Flexure Modulus (a)	 Short Beam Shear Strength (b)
MPa	 Ksi	 GPa	 Msi	 MPa	 Ksi

L	

Panel 772-84/1 (c)	419	 60.8	 26	 3.7	 31	 4.5

Panel 772-8.4/4 (c)	518	 75.2	 26	 3.8	 32	 4.6

Panel 772-84/5 (4)	456	 66.1	 25	 3.6	 32	 4.6

a;	 (a) Average of four determinations.
(b) Average of six determinations.
(c) Autoclaved with unimidized material and a caul plate.
(d) Autoclaved with unimidized material and bleeder cloth on surface.

(-) All 102 x 102 x 2.4 mm panels autoclaved and postcured together.
(-) NR-050X sample lot -87 obtained in October 1976.

b



TABLE VII

MECHANICAL TEST DATA ON DIE MOLDED
PMR II/S-6581 LAMINATE

Flexure Strength Flexure Modulus Short Beam Shear
MPa Ksi GPa Msi MPa Ksi

Room 687 99.6 32 4.6 80 11.6

I	 Temp. 687 99.6
^'

, 81 11.7
702 101.8 r 83 12.0

Avg. 692 100.3 32 4.6 81 11.8

316°C (600°F) 541 78.4 30 4.3 4S 6.5
540 78.3

^'
1 3S S.1

531 77.0 Y 41 5.9

f Avg. 537 77.9 ss-0 4.3 40 5.8

r
(-) Laminate number 826-24
(-) Estimated fiber volume;	 53.6 v/o
(-) Laminate postcured 16 hours @ 316°C (600°F)
(-) Molding pressure 3.4 MPa (S00 psi)
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TABLE VIII

PMR-15 DIE MOLDED LM9INATE DATA

Laminate
Reinforcement	 No.

Fiber Volume
v/o

Thickness
mm (mils)

Specific Gravity
As-Molded	 Postcured

Weight Loss
in Postcure(a)

W/o

S-6581	 772-30 51.0 2.3	 (90) 1.90	 - 1.2

772-31 - 2.4	 (94) 1.89	 - 1.3

IF	 772-32 - 2.3	 (92). 1.91	 - 1.4

A-S	 772-49 - 2.3 (91) 1.55	 - 1.5

0
772-50 52.1 1.56 1.6

If	 772 -51 - - 1.7

NOTE: (a) Postcured at 3430C (6500F) for 16 hours.



47.6 6.9 35.2 5.1
47.6 6.9 35.2 5.1
47.6 6.9 35.9 5.2

47.6 6.9 35.2 5.1Avg.

Panel 772-30
Postcured (b)

TABLE IX

SHORT BEAM SHEAR STRENGTH RESULTS ON DIE MOLDED S-6581/PMR-15

Room Temperature
	

3160C (6000F)

Panel 772-30
As-Molded (a)

Avg.

MPa Ksi

74.5 10.8
80.7 11.7
75.8 11.0

77.2 11.2

MPa Ksi

27.6 4.0
29.0 4.2
30.3 4.4

29.0 4.2

NOTES:	 (a) 33.5 w/o resin (avg. of 3 results)

(b) 33.2 w/o resin (avg. of 3 results)



'FABLE X

FLEXURE TEST RESULTS ON DIE MOLDED S-6581/PMR-15

Room Temperature 3160C (6000F)

Strength Modulus Strength Modulus

MPa	 Ksi GPa Msi MPa	 Ksi GPa Msi

713	 103.4 32 4.7 410	 59.5 24 3.5
763	 110.7 30 4.4 357	 51.8 25 3.6
773	 112.2 32 4.6 412	 59.7 26 3.7

750	 108.8 32 4.6 393	 57.0 25 3.6

Panel 772-30
As-Molded (a)

Avg.

Panel 772-30

r^ Postcured (b)

Avg.

523 75.8 27 3.9
537 77.9 27 3.9
570 82.7 28 4.0

543 78.8 27 3.9

446 64.7 26 3.8
414 60.1 26 3.7
460 66.7 2266 3.7

440 63.8 26 3.7

i

NOTES: (a) 33.5 w/o resin (avg. of 3 results)
	

z

(b) 33.2 w/o resin (avg. of 3 results)
i

I
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TABLE XI

SHORT BEAM SHEAR STRENGTH RESULTS ON DIE MOLDED A-S /PMR-15

Room Temperature 3160C (6000F)

MPa Ksi MPa Ksi.

Panel 772-50
As-Molded	 113 16.4 40 5.8

112 16.2 39 5.7
112 16.2 37 5.3

Avg.	 112 16.3 39 5.6

Panel 772-50
Postcured	 106 15.4 57 8.3

110 16.0 53 7.7
99 14.4 54 7.8

Avg.	 105 15.3 54 7.9
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TABLE XII

FLEXURE TEST RESULTS ON DIE MOLDED A--S/PHIL-15

Room Temperature	 316oC (6000 F)

Strength Modulus Strength Modulus

MI'a Ksi GPa Msi MPa Ksi GPa Msi

1575 228.4 97.2 14.1 749 108.6 90.3 13.1

1524 221.0 97.9 14.2 1004 145.6 89.6 13.0
1538 223.0 95.8 13.9 856 124.1 9 1.0 13.2

1545 224.1 97.2 14.1 869 126.1 90.3 13.1

1155 167.5 95.8 13.9 1018 147.7 89.6 13.0
1229 178.3 99.3 14.4 1083 157.1 93.8 13.6
1362 197.5 95.8 13.9 1122 162.7 94.5 13.7

1249 181.1 97.2 14.1 1074 155.8 92.4 13.4

Panel 772-50
As-Molded

Avg.

Panel 772-50
Postcured

Avg.
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20 x 20 CDl AUTOCLAVE MOLDED PMR-15 LAMINATE DATA

Weight Loss
Laminate Fiber Volume Thickness Specific Gravity in Postcure(a)

Reinforcement No. v/o nun (mils) As-Molded Postcured w/o

S-6581 772-35 - 2.6(102) 1.89 1.87 1.4
772-36 50.3 1.88 1.87 1.3
772-37A 1.88 - 1.3
772-37AA 1.88 1.5

T-300 (sized) 772-38A 51.2 2.0(80) 1.52 1.53 1.5
772-39A - - - 1.6
772-48/1 - 1 1.53 - 1.2

T-300 (Ileat 772-38AA 52.4 2.0(80) 1.52 1.53 1.6
En	 cleaned) 772-39AA - 1.52 1.6

772-48/2
-

1.52
_

1.3

(a) Post cure at 343oC (650oF) for 16 hours.

1



TABLE XIV

SHORT BEAD! SHEAR STRENGTH RESULTS ON AUTOCLAVE MOLDED S-6581/PMR-15

Room Temperature 3160C (600oF)

MPa Ksi MPa Ksi

Panel 772-36
As-Molded(a) 75.2 10.9 14 2.1

76.5 11.1 21 3.0
75.8 11.0 12 1.7

Avg. 75.8 11.0 16 2.3

Panel 772-36
Postcured 38 5.5 34 5.0

37 5.3 34 5.0
34 5.0 35 5.1

Avg. 37 5.3 34 5.0

Panel 772-35
Postcured(b ) 33 4.8 37 5.4

37 5.3 32 4.6
34 4.9 32 4.7

Avg. 34 5.0 34 4.9

(a) Molded with caul plate.
(b) Molded without caul plate..



TABLE XV

FLEXURE TEST: RESULTS ON AUTOCLAVE MOLDED 5-6581/PMR-15

Room Temperature 3160C (6000F)

Strength Modulus Strength Modulus

MPa	 Ksi GPa Msi MPa Ksi GPa Msi

Panel 772-36 (a) 714	 103.5 28 4.0 264 38.3 16 2.3
As-Molded 642	 93.2 4.0 367 53.3 21 3.1

656	 95.1

1
4.0 374 54.2 22 3.2

Avg. 671	 97.3 4.0 335 48.6 20 2.9

Panel 772-36 678	 98.3 26 3^7 381 55.3 23 3.4
Postcured 463	 67.1 3.7 516 74.8 25 3.6

667	 96.7

1
3.7 444 64.3 23 3.3

Avg. 603	 87.4 3.7 447 64.8 23 3.4

Panel 772-35(b) 403	 58.5 22 3.2 356 51.7 21 3.0
Postcured 437	 63.4 23 3.4 341 49.4 3.0

376	 54.5 20 2.9 383 55.6 3.0

Avg. 403	 .58.8 22 3.2 360 52.2 3.0

(a) Molded with caul plate.
(b) Molded without caul plate.



SHORT BEAM SIIEAlt STRENGTH RESULTS ON AUTOCLAVE MOLDED T-300/PMR-15

Room Temperature 3160C (60000)

MPa Ksi MPa	 Ksi

61 8.8 32	 4.7
57 8.2 36	 5.2
61 8.8 30	 4.3

Avg. 59 8.6 32	 4.7

46 6.6 43	 6.2
46 6.7 42	 6.1
48 6.9 41	 6.0

Avg. 46 6.7 42	 6.1

57 8.2 33	 4.8
53 7.3 32	 4.7
50 7.2 38	 5.5

Avg. 52 7.6 34	 5.0

47 6.8 34	 5.0
45 6.5 35	 5.1
44 6.4 38	 5.5

Avb. 46 6.6 36	 5.2

i

TABLE XVI

Panel 772-38A
As-Molded(a)

Panel 772-38A
Postcured(a)

A
°O	 Panel 772-38AA

As-Molded(b)

Panel 772-38AA
Postcured(b)

Via) Sized Cloth.
(b) Cloth beat cleaned prior to resin application.

M



TABLE XVII

FLEXURE TEST RESULTS ON AUTOCLAVE MOLDED T-300/PMR-15

Room Temperature 3160C (6000F)

Strength Modulus Strength Modulus

MPa Ksi GPa Msi MPa Ksi GPa Msi

Panel 772-38A 749.5 108.7 55 8.0 343 49.8 34 5.0
As-Molded(a) 745.3 108.1 54 7.9 385 55.8 42 6.1

795.0 115.3 56 8.1 561 81.4 51 7.4
Avg. 763.2 110.7 55 8.0 430 62.3 43 6.2

Panel 772-38A 746 108.2 51 7.4 543 78.7 52 7.6
Postcured(a) 596 86.5 53 7.7 609 88.3 52 7.6

593 86.0 56 8.1 632 91.6 54 7.8
Avg. 645 93.6 53 7.7 594 86.2 53 7.7

t
Panel 772-38AA 671 97.3 55 8.0 500 72.5 46 6.7
As-Molded(b) 656 95.2 53 7.7 557 80.8 50 7.2

713 103.4 54 7.9 521 75.5 53 7.7
Avg. 680 98.6 54 7.9 526 76.3 S0 7.2

Panel 772-38AA 575 83.4 54 7.9 518 75.2 54 7.8
Postcured(b ) 669 97.0 52 7.5 488 70.8 52 7.6

762 110.5 54 7.8 569 82.5 52 7.5
Avg. 669 97.0 53 7.7 525 76.2 52 7.6

(a) Sized cloth.

8	 (b) lteat cleaned cloth.

C! 'd
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TABLE XVIII

316°C (600'F) FLEXURAL AND SHEAR DATA ON PHR II/S-6581(a)

Flex. Strength Flex. Modulus Short Beam Shear Strength

MPa Ksi GPa Msi MPa Ksi

Panel 772-90 504 73.1 25 3.6 39 5.7
As-Molded 496 71.9 26 3.8 37 5.3

490 71.1 26 .3.7 37 5.4.

Avg. 496 72.0 26 3.7 38 5.5

Panel 772-90 454 65.9 25 3.6 34 4.9
Postcured 343°C 465 67.5 24 3.5 34 5.0

(6500F) 456 66.1 26 3.7 35 5.1

Avg. 459 66.5 25 3.6 34 5.0
fig
C)

(a) Autoclaved Panel using NR-050X Lot -30.



TABLE XIX

3161C (600°F) FLEXURAL AND SHEAR DATA ON PMR II/WOVEN T-300
AUTOCLAVED PANELS USING NR-050X LOT -30

Flex. Strength Flex. Modulus Short Beam Shear Strength

MPa Ksi GPa Msi MPa Ksi

596 86.5 53 7.7 40 5.8
558 80.9 54 7.8 42 6.1
554 80..3 52 7.6 39 5.7

570 82.6 53 7.7 41 5.9

568 82.4 52 7.5 43 6.3
554 80.3 52 7.5 43 6.2
603 87.5 54 7.8 39 5.7

575 83.4 52 7.6 42 6.1

z
Panel 772-98
As-Molded

Avg.

Panel 772-98
Ul	 Postcured 343°C

(650°F)

Avg.



TABLE XX

2600C (5000F) ISOTHERMAL WEIGHT LOSSES

Material Laminate No. Hours o Weight Loss

T-300 772-95T 312 1.5
PMR-15 591 2.3
Auto. Molded 1015 2.0

A-S 826-1 312 1.1	 i
PMR-15 591 1.2
Die Molded 1015 1.5

S-6581 772-9SS 312 1.0
PMR-15 591 1.1
Auto. Molded 999 1.4

2000 2.6



TABLE XXI

260°C (500oF) ISOTIIERMAL MECHANICAL TEST DATA ON AUTOCLAVE
MOLDED WOVEN T-300/PMR-15 COMPOSITE.

Exposure Exposure $ Test Flexure Strength Flexure Short Beaus Shear Strength
Time Temperature % Modulus %
hrs °C (°F) MPa *	 Ksi Retention GPa	 Msi MPa Ksi Retention

RT 684 99.2 - 55.1	 8.0 60 8.7 -

0.5 260 (500) 689 100.0 100 53.8	 7.8 46 6.6 100

312 675 97.9 98 53.1	 7.7 46 6.6 100

591 639 92.7 93 52.4	 7.6 46 6.6 100

1015 592 85.8 86 49.6	 7.2 43 6.3 95
v,
w

(-) Laminate number 772-95T

(-) Laminate postcured 16 hours at 316°C (6000F)

(-} All values represent average of three specimens

{-) Fiber volume determined to be 51.9 v/o (original)

'v +G7



TABLE XXII

260°C (500°F) ISOTHERMAL MECHANICAL TEST DATA ON DIE MOLDED UNIDIRECTIONAL A-S/PMR-15 COMPOSITE

Exposure Exposure $ Test Flexure Strength Flexure Short Beam Shear Strength
Time Temperature % Modulus
hrs °C (°F) MPa Ksi Retention GPa Msi MPa Ksi Retention

- RT 1302 188.8 - 97.2 14.1 103 15.0 -

0.5 260 (500) 1230 178.4 100 96.5 14.0 59 8.6 100

312 1247 180.9 100 91.7 13.3 54 .7.8 91

591 1243 180.3 100 96.5 14.0 55 8.0 93

Ln	 1015 1152 167.1 94 95.8 13.9 57 8.3 97

(-) Laminate number 826-1
(-) Laminate postcured 16 hours at 316°C (600°F)
(-) All values represent average of three specimens
(-) Fiber volume determined to be 52.6 v/o (original)



TABLE XXIII

260°C (500°F) ISOTHERMAL MECHANICAL TEST DATA ON AUTOCLAVE MOLDED
WOVEN S-6581 GLASS/PMR-15 COMPOSITES'

Exposure Exposure $ Test	 Flexure Strength Flexure Short Beam Shear Strength
Time Temperature $ Modulus
lirs °C (°F) MPa Ksi Retention GPa Msi MPa Ksi	 Retention

- RT 605 87.8 - 27 3.9 52 7.5	 -

0.5 260 (500) 458 66.4 100 25 3.6 34 5.0	 100

312 460 66.7 100 26 3.7 39 5.7{

591 389 56.4 85 25 3.6 41 5.9

999 385 55.9 84 25 3.6 38 5.5

2000 371 53.8 81 26 3.7 38 5.5

(-) Laminate number 772-95S
(-) Laminate postcured 16 hours at 316°C (6000F)
-) All values represent average of three specimens
-) Fiber voltmie determined to be 50.7 v/o (original)
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TABLE XYIV

3160C (6000F) ISOTHERMAL WEIGHT LOSSES r

Material Laminate No. Hours	 % Weight Loss
ap

S-6581 772-96S 294 2.7
f PMR-15 600 8.2

Auto. Molded 1008 16.6
l 1416 22.8

j^
2000 29.9

S-6581 826-2 294 4.0
PMR-15 600 9.3 r

Die Molded. 1008 18.8 y
2000.

S-6581 826-27 336 2.4
0

I PMR II 826-25 598 5.2
Auto. Molded 1006 8.6

2014 11.8

HM-S (a) 767-59 294 1.6
PMR-15 600 3.0
Die Molded 1008 6.1

1416 9.4
2000 15.8

i

VOTE:	 (a) Control panel

" 1
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TABLE XX-

316°C (600°F) ISOTHERMAL MECHANICAL TEST DATA ON AUTOCLAVE MOLDED
WOVEN S-6581/PMR-15 COMPOSITES

Exposure Exposure 4 Test Flexure Strength Flexure Short Beam Shear Strength
Time Temperature o Modulus
hrs oC (OF) MPa Ksi	 Retention GPa	 Msi MPa Ksi Retention

- RT 610 88.5	 - 28	 4.1 68 9.9 -

0.5 316 (600) 499 72.4	 100 26	 3.8 33 4.8 100

294 344 49.9	 69 22	 3.2 35 5.1 100

600 99 14.3	 20 12	 1.7 25 3.6 75
N
V

1000 Too badly degraded to test.

(-j Laminate number 772-96S
-) Laminate postcured 16 hours at 316°C (600°F)
-) All values represent average of three specimens
-) Fiber volume determined to be 51.1 v/o (original)
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TABLE XXVI

316°C (600°F) ISOTHERMAL MECHANICAL TEST DATA ON DIE MOLDED
WOVEN S-6581 GLASS/PMR-15 COMPOSITE

u,
w

Exposure Exposure 8 Test Flexure Strength Flexure Short Beam Shear Strength
Time Temperature % Modulus %
hrs °C (°F) MPa Ksi	 Retention GPa	 Msi MPa Ksi Retention

- ftr 654 94.9	 - 30	 4.3 S4 7.8 -

0.5 316 (600) 489 70.9	 100 26	 3.8 31 4.5 100

294 288 41.8	 59 21	 3.1 28 4.1 91

600 112 16.2	 23 12	 1.8 21 3.1 69

1000 Too badly degraded to test.

(-) Laminate number 826-2
(-) Laminate postcured 16 hours at 316°C (6000F)
(-) All values represent average of three specimens
(-) Fiber volume determined to be 47.9 v/o (original)



TABLE XXVII

3160C (600°F) ISOMEIMAL MECHANICAL TEST DATA ON AUTOCLAVE MOLDED WOVEN S-6581/PMR IICOMPOSITES

Exposure Exposure & rest Flexure Strength Flexure Short Beam Shear Strength
Laminate Time Temperature o Modulus

No. hrs °C OF MPa Ksi Retention GPa Msi MPa Ksi Retention

826-25 - RT RT - - - - - 80 11.6 -

826-27 - RT RT - - - - - 81 11.8 -

826-25 0.5 31.6 600 523 75.8 100 28 4.0 37 5.3 100

826-27 0.5 491 71.2 100 28 4.0 32 4.7 100

826-27 336 259 37.6 53 25 3.6 30 4.3 91

826-25 598 164 23.8 31 22 3.2 18 2.6 49

826-27 1006 141 20.5 29 22 3.2 10 1.4 30
Lq
tD	 826-25 2014 100 14.5 19 14 2.1 7 1.0 19

826-27 2014 92 13.3 19 14 2.1 7 1.0 21

(-) Laminate numbers 826-25 & 826-27
(-) Laminate postcured 16 hours at 316 C (6000F)
(-) All values represent average of three specimens
(-) Fiber volumes determined to be 54.7 $ 52.4 v/o (original)
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TABLE XXVIII

FOUR-POINT FLEXURE STRENGTII RESULTS ON THICK PMR-15 LAMINATES

Gage Length Span/Depth Strength
Laminate Identity Configuration Ratio MPa Ksi

T-300/Autoclave	 (Molded Straight 30 659 95.6
Lam. No. 826-16 Straight 30 699 101.4

T-300/Din Molded Reduced 46 792 114.9
Reduced 46 751 108.9

S-6581/Autoclave	 Molded Straight 23 567 82.3
Lam. No. 826-17 Reduced 541 78.5

Reduced 553 80.2

`T	 S-6581/Die Molded0 Reduced 25 637 92.4
Lam. No. 826-13

A-S/Die Molded Straight 42 1199 173.9
Lam. No. 826-15 Straight 41 1283 186.1

Reduced 43 1134 164.5

(-) Thickness range of laminates from 3.7 to 7.3 mm (0.146-0.289 inches).

(-) Inner span 5.7 cm (2.25 inches), outer span 17.1 cm (6.75 inches).

Lam.-
.	 r
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TABLE XXIX

FOUR-POINT FLEXURE STRENGTH RESULTS ON THIN PMR-15 LAMINATES

Strength
Laminate Identity Gage Length Configuration Span/Depth Ratio MPa Ksi

1'-300/Autoclave Molded Straight 35 705 102.2
Lam. No. 772-94 Straight 35 682 98.9

Reduced 49 616 89.3
585 84.9
581 84.3

S'-6581/Die Molded Straight 29 631 91.5
Lain. No. 826-4 590 85.5

586 85.0

Reduced 29 668 96.9
661 95.9
682 98.9

A-S/!)i-- Molded Straight 41 1270 184.2
Lain. No. 772-100 1105 160.3

1094 158.6

Reduced 41 1201 174.2
1108 160.7

1 1179 171.0

(-) Thickness range of laminates from 0.20 to 0.24 mn (0.077-0.093 inches).

mb
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TABLE XXX

PMR-15

i

COMPOSITE STRESS LEVELS AT 1 x 107 FLEXURAL FATIGUE CYCLES

1

T-300 5-6581 S-6581
Autoclaved Autoclaved Die Molded

Range

MI'a 191-253 65-84 74-91

Ksi 27.7-36.7 9.4-12.2 10.8-13.2

of Ultimate 
(a) 29-38 11-14 13-16

b`	 AverageN

MI'a 222 74 83

Ksi 32.2 10.8 12.0

of Ultimate (a) 33 13 14

Note: (a) % of ultimate static flexural strength
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TABLE XXXI

RETAINED FOUR-POINT FLEXURE STRENGTH RESULTS FROM NON-FAILED FATIGUE SPECIMENS

Fatigue Exposure Post-Fatigue Flexural Results

Fatigue
Fatigue Cycles. of Ultimate

Material Stress of Ultimate Accumulated Span/Depth Strength Strength
Identification MPa	 Ksi Stress Applied (Millions) Ratio MPa Ksi Retained

T-300/Autoclaved (a) 165	 23.9 25 2.3 45 694 100.6 100
all	 Lam. No. 826-10 197	 28.5 29 7.8 45 685 99.3 100

5-6581/Autoclaved (b) 79	 11.4 18 15.3 24 542 78.6 93
Lam. No. 826-18

S-6581/Die (b) 79	 11.4 14 7.1 25 598 86.8 100
Lam. No. 826-13

?	 S-6581/Die(b) 85	 12.4 15 2.6 2S 616 89.4 100
Lars. No. 826-8 108	 15.7 19 2.4 25 426 61.8 73

NOTES: (a) Control static flexure failure stress value equal to 669 MPa (97.0 Ksi).

(b) Control static flexure failure stress value equal to 581 MPa (84.3 Ksi).

2.
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Figure 8. Autoclave Bag and Blanket-Heated Tool Concept.

t:



350

&Ou

}OO

500

250 N

4OO
2O0

0^
'	 -

m	 w`	 ^

^|5O	 ^ 3U0
m	 m

lOn 8.	 200

50
lOu

.sure Attained

ssu,izotion

^

20	 40	 60	 80	 108	 120	 140	 160	 |80	 200	 220	 240
Time. Minutes

Figure Q. Temperature Rise of Steel Too' in First Autoclave
Run with Heating Blankets.

^	 72



SILICONE RUBBE:'. SHEET --

POLYIMIDE SEPARATOR FILM

GLASS BLEEDER PLIES

CAUL PLATE

COMPOSITE WORK PIECE—

POLISHED BASE PLATE

ALUMINUM SEALING FRAME

SILICONE RUBBER O-RING –

ALUMINUM PLATE

INSULATED ELECTRICAL
HEATINGBLANKET

TRANSITE INSULATOR PLATE

Figure 10. photograph of Partially Complete Assembly of Locally
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Figure ll. Locally Heated Autoclave Rag Assembly with Clamping
Frame in Place and Vacuum Drawn.
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Figure 12. Locally Heated Autoclave Bag Assembly Ready to Run.
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Figure 17. Reverse Bending Fatigue Fixture with Specimen in Place
Mounted on Fatigue Machine.
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Figure 19. S-6581/PMR-1S Fatigue Specimens Showing Typical Failure Mode.



Figure 20. T-300/PNtR-15 Fatigue Specimen Showing Typical
Damage Locations after Test.
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Figure 21. Four Different Fatigue Specimen Designs for A-S/PMk-15.
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APPENDIX A

RAW MATERIAL PURCHASE REQUIRENRrNTS

Item #1	 Unidirectional A-S/PMR-15 Prepreg,

Sheet width to be 12" -0.000"
+0.250' ►

Sheet lengths to be 60" and/or 72" -0.000"
+0.500"

Item #2	 T-300 cloth /PNIR-15 prepreg width to be 42"

Item #3	 S-6581 S-Glass Cloth/PMR-15 prepreg
width to be 38"

Additional requirements for each item shown in the Specification
attached.
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APPENDIX A (continued)

PMR-15 PREPREG REQUIREMENTS

These additional requirements apply to the designated purchase order.

Item 1: Unidirectional A-S/PMR-15

a) Fiber to be aerospace grade.

b) Fiber volume to be 59 *1 v/o (see attached table I).

c) Total volatile content to be 13 t2 w/o.

d) Molded per ply thickness to be 0.0075 inch ±0.0005 inch.

Item 2: T-300 Cloth/PMR-15

a) Weave to be 24 x 24 (warp and fill).

b) 3000 filament yarn.

c) Cloth to be heat cleaned to remove weaving finish.

d) Fiber volume to be 59 ±1 v/o (see attached table I).

e) Total volatile content to be 13 t2 w/o.

Item 3: S-6581 Glass Cloth/PMR-15

a) Finish on cloth to be Burlington I-599 (formerly GB-855).

b) Fiber volume to be 58 ±1 v/o (see attached table I).

C) Total volatile content to be 13 t2 w/o.

The following requirements apply to all three items:

a) Packaging to be vapor proof and suitable for refrigerated storage.

b) Material to be dry ice slipped marked for 0 0F storage.

c) Certifications required for each material which gives resin mix

number, fiber, lot number, resin content, volatile content.
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TABLE I

"d	NOMINAL PREPREG RESIN CONTENTS EXPRESSED
IN VOLUME AND WEIGHT `I'EMIS

Volme % Fiber	
Weight % Cured

Resin
Weight % Uncured

Resin

Item #1
A-S/PMR-15

Item #F2
Carbon Cloth/PMR-15

Item 113
Glass Cloth/PNIR-15

v/o Fiber

59

59

58

w/o Cured Resin	 w/o Uncured Resin

	

33.76	 38.07

	

34.26	 38.59

	

27.73	 31.64

Note: See attached explanatory cormnents.



FORMULAE AND ASSUMPTIONS USED TO CALCULATE

PREPREG WEIGHT VS VOLUME RELATIONS IN TABLE I

Component Densities

PAIR-15: 1.32 gm/cc
A-S: 1.799 gm/cc
T-300: 1.76 gfi/cc
S-Glass: 2.49 gm/cc

Conversion from v/o Fiber to w/o Cured Resin

1 (1-V
f )Weight & Cured Resin (CR) = pf 	

x 100

1 (1-Vf) + Vf

p f	 pr

Where: V  = fiber volume %.

p f = density of fiber

Pr = density of resin

Conversion from w/o Cured Resin to w/o Uncured Resin

CR

Weight & Uncured Resin (w/o) = 0.829	 CR x 100

(1-CR) + 0.829

Where: CR = weight % cured resin

NOTE: Since the densities for each of the fibers vary from lot to lot,
it is expected that the vendor will recalculate the correct
target values of w/o resin using the value for the specific
fiber lot employed.
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APPENDIX B
V

REVERSE BENDING

FLEXURE FATIGUE EQUATIONS

For a given arrangement, that is, for a given specimen length and leverage,

the maximum thickness of the material (hmax) that can be tested is limited

by the capacity of the machine.

3 PR in inches	 (1)h	 =	 bs
max

Where P = peak force, equal to the sum of the force produced by the

eccentric, which cannot exceed 1000 pounds, plus preload

up to 1000 pounds.

R = leverage, 3 or 6 inches.

b = specimen width in inches.

s = maximum bending stress.in psi.

The minimum thickness, hmin, is limited by allowable motion of the recipro-

cating platen, =0.37 inch for tests without preload and ;0.15 inch for tests

with full preload. To calculate minimum thickness, use:

hmin - R S in inches	 (2)

Where R = leverage, 3 or 6 inches.

s = repeated stress, psi.

L = free specimen length between grips, inches.	 ORIGINAL PAGE IS

Y = amplitude of reciprocating platen motion.
OF POOR QUALITY

E = dynamic modulus of elasticity of specimen, psi.

Equation (1), rearranged, can be used to calculate the force required to

produce a certain bending stress in a flat specimen:

K
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APPENDIX B (continued)

2
P = bs R in pounds	 (3)

Equation (2) rearranged produces a formula to calculate the amplitude of

vibration of the reciprocating platen:

Y = 5 E	 in inches	 (4)

However, Equation (4) holds only for specimens of uniform width.
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