research

PMR polyimide/graphite fiber composite fan blades

Abstract

Ultrahigh speed fan blades, designed in accordance with the requirements of an ultrahigh tip speed blade axial flow compressor, were fabricated from a high strength graphite fiber tow and a PMR polyimide resin. The PMR matrix was prepared by combining three monomeric reactants in methyl alcohol, and the solution was applied directly to the reinforcing fiber for subsequent in situ polymerization. Some of the molded blades were completely finished by secondary bonding of root pressure pads and an electroformed nickel leading edge sheath prior to final machining. The results of the spin testing of nine PMR fan blades are given. Prior to blade fabrication, heat resin tensile properties of the PMR resin were examined at four formulated molecular weight levels. Additionally, three formulated molecular weight levels were investigated in composite form with both a high modulus and a high strength fiber, both as-molded and postcured, in room temperature and 232 C transverse tensile, flexure and short beam shear. Mixed fiber orientation panels simulating potential blade constructions were also evaluated. Flexure tests, short beam shear tests, and tensile tests were conducted on these angle-plied laminates

    Similar works