98 research outputs found

    Properties of the CsI(Tl) detector elements of the CALIFA detector

    Get PDF
    In the R3B experiment at FAIR, charged particles with energies up to 600 MeV and forward boosted γ-rays with energies up to 20 MeV need to be detected in scattering experiments. Calorimeters for nuclear physics experiments of this kind, using relativistic radioactive ion beams, require high energy resolution and high efficiency for simultaneous detection of strongly Doppler shifted γ-rays and high-energy charged particles. A calorimeter design that can meet these requirements, using CsI(Tl) scintillators, results in detector elements that may exhibit light output variations with crystal depth, which can limit the attainable resolution. In this paper we present results from a systematic study of 478 detector modules of CALIFA, the R3B calorimeter, in order to determine and minimize such variations. To facilitate further systematic studies we also present results for the total absorption length of the scintillation light, using spectrophotometry, light crosstalk between adjacent detector modules, and surface topography of the CsI(Tl) crystals from atomic force microscopy.Swedish research council | Ref. 2017-03986Swedish research council | Ref. 2014-06644Swedish research council | Ref. 2013-04178Swedish research council | Ref. 2012-04550BMBF, Alemania | Ref. 05P15WOFNABMBF, Alemania | Ref. 05P19WOFN1BMBF, Alemania | Ref. 05P15RDFN1BMBF, Alemania | Ref. 05P19RDFN

    Tubulin Tyrosination Is Required for the Proper Organization and Pathfinding of the Growth Cone

    Get PDF
    International audienceBACKGROUND: During development, neuronal growth cones integrate diffusible and contact guidance cues that are conveyed to both actin and microtubule (MT) cytoskeletons and ensure axon outgrowth and pathfinding. Although several post-translational modifications of tubulin have been identified and despite their strong conservation among species, their physiological roles during development, especially in the nervous sytem, are still poorly understood. METHODOLOGY/FINDINGS: Here, we have dissected the role of a post-translational modification of the last amino acid of the alpha-tubulin on axonal growth by analyzing the phenotype of precerebellar neurons in Tubulin tyrosin ligase knock-out mice (TTL(-/-)) through in vivo, ex vivo and in vitro analyses. TTL(-/-) neurons are devoid of tyrosinated tubulin. Their pathway shows defects in vivo, ex vivo, in hindbrains open-book preparations or in vitro, in a collagen matrix. Their axons still orient toward tropic cues, but they emit supernumerary branches and their growth cones are enlarged and exhibit an emission of mis-oriented filopodia. Further analysis of the TTL(-/-) growth cone intracellular organization also reveals that the respective localization of actin and MT filaments is disturbed, with a decrease in the distal accumulation of Myosin IIB, as well as a concomitant Rac1 over-activation in the hindbrain. Pharmacological inhibition of Rac1 over-activation in TTL(-/-) neurons can rescue Myosin IIB localization. CONCLUSIONS/SIGNIFICANCE: In the growth cone, we propose that tubulin tyrosination takes part in the relative arrangement of actin and MT cytoskeletons, in the regulation of small GTPases activity, and consequently, in the proper morphogenesis, organization and pathfinding of the growth cone during development

    70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer.

    Get PDF
    The 70-gene signature test (MammaPrint) has been shown to improve prediction of clinical outcome in women with early-stage breast cancer. We sought to provide prospective evidence of the clinical utility of the addition of the 70-gene signature to standard clinical-pathological criteria in selecting patients for adjuvant chemotherapy. In this randomized, phase 3 study, we enrolled 6693 women with early-stage breast cancer and determined their genomic risk (using the 70-gene signature) and their clinical risk (using a modified version of Adjuvant! Online). Women at low clinical and genomic risk did not receive chemotherapy, whereas those at high clinical and genomic risk did receive such therapy. In patients with discordant risk results, either the genomic risk or the clinical risk was used to determine the use of chemotherapy. The primary goal was to assess whether, among patients with high-risk clinical features and a low-risk gene-expression profile who did not receive chemotherapy, the lower boundary of the 95% confidence interval for the rate of 5-year survival without distant metastasis would be 92% (i.e., the noninferiority boundary) or higher. A total of 1550 patients (23.2%) were deemed to be at high clinical risk and low genomic risk. At 5 years, the rate of survival without distant metastasis in this group was 94.7% (95% confidence interval, 92.5 to 96.2) among those not receiving chemotherapy. The absolute difference in this survival rate between these patients and those who received chemotherapy was 1.5 percentage points, with the rate being lower without chemotherapy. Similar rates of survival without distant metastasis were reported in the subgroup of patients who had estrogen-receptor-positive, human epidermal growth factor receptor 2-negative, and either node-negative or node-positive disease. Among women with early-stage breast cancer who were at high clinical risk and low genomic risk for recurrence, the receipt of no chemotherapy on the basis of the 70-gene signature led to a 5-year rate of survival without distant metastasis that was 1.5 percentage points lower than the rate with chemotherapy. Given these findings, approximately 46% of women with breast cancer who are at high clinical risk might not require chemotherapy. (Funded by the European Commission Sixth Framework Program and others; ClinicalTrials.gov number, NCT00433589; EudraCT number, 2005-002625-31.)

    Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis

    Get PDF
    Background Cyclin-dependent protein kinase-5 (CDK5) is an unusual member of the CDK family as it is not cell cycle regulated. However many of its substrates have roles in cell growth and oncogenesis, raising the possibility that CDK5 modulation could have therapeutic benefit. In order to establish whether changes in CDK5 activity are associated with oncogenesis one could quantify phosphorylation of CDK5 targets in disease tissue in comparison to appropriate controls. However the identity of physiological and pathophysiological CDK5 substrates remains the subject of debate, making the choice of CDK5 activity biomarkers difficult. Methods Here we use in vitro and in cell phosphorylation assays to identify novel features of CDK5 target sequence determinants that confer enhanced CDK5 selectivity, providing means to select substrate biomarkers of CDK5 activity with more confidence. We then characterize tools for the best CDK5 substrate we identified to monitor its phosphorylation in human tissue and use these to interrogate human tumour arrays. Results The close proximity of Arg/Lys amino acids and a proline two residues N-terminal to the phosphorylated residue both improve recognition of the substrate by CDK5. In contrast the presence of a proline two residues C-terminal to the target residue dramatically reduces phosphorylation rate. Serine-522 of Collapsin Response Mediator-2 (CRMP2) is a validated CDK5 substrate with many of these structural criteria. We generate and characterise phosphospecific antibodies to Ser522 and show that phosphorylation appears in human tumours (lung, breast, and lymphoma) in stark contrast to surrounding non-neoplastic tissue. In lung cancer the anti-phospho-Ser522 signal is positive in squamous cell carcinoma more frequently than adenocarcinoma. Finally we demonstrate that it is a specific and unusual splice variant of CRMP2 (CRMP2A) that is phosphorylated in tumour cells. Conclusions For the first time this data associates altered CDK5 substrate phosphorylation with oncogenesis in some but not all tumour types, implicating altered CDK5 activity in aspects of pathogenesis. These data identify a novel oncogenic mechanism where CDK5 activation induces CRMP2A phosphorylation in the nuclei of tumour cells

    Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: neurotoxicology study

    Get PDF
    BACKGROUND: Dioxins and related compounds are suspected of causing neurological disruption in human and experimental animal offspring following perinatal exposure during development and growth. The molecular mechanism(s) of the actions in the brain, however, have not been fully investigated. A major participant in the process of the dioxin-toxicity is the dioxin receptor, namely the aryl hydrocarbon receptor (AhR). AhR regulates the transcription of diverse genes through binding to the xenobiotic-responsive element (XRE). Since the AhR has also been detected in various regions of the brain, the AhR may play a key role in the developmental neurotoxicity of dioxins. This study focused on the effect of AhR activation in the developing neuron. METHODS: The influence of the AhR on the developing neuron was assessed using the Neuro2a-AhR transfectant. The undifferentiated murine neuroblastoma Neuro2a cell line (ATCC) was stably transfected with AhR cDNA and the established cell line was named N2a-Rα. The activation of exogenous AhR in N2a-Rα cells was confirmed using RNAi, with si-AhR suppressing the expression of exogenous AhR. The neurological properties of N2a-Rα based on AhR activation were evaluated by immunohistochemical analysis of cytoskeletal molecules and by RT-PCR analysis of mRNA expression of neurotransmitter-production related molecules, such as tyrosine hydroxylase (TH). RESULTS: N2a-Rα cells exhibited constant activation of the exogenous AhR. CYP1A1, a typical XRE-regulated gene, mRNA was induced without the application of ligand to the culture medium. N2a-Rα cells exhibited two significant functional features. Morphologically, N2a-Rα cells bore spontaneous neurites exhibiting axon-like properties with the localization of NF-H. In addition, cdc42 expression was increased in comparison to the control cell line. The other is the catecholaminergic neuron-like property. N2a-Rα cells expressed tyrosine hydroxylase (TH) mRNA as a functional marker of catecholaminergic neurotransmitter production. Thus, exogenous AhR induced catecholaminergic differentiation in N2a-Rα cells. CONCLUSION: The excessive activation of AhR resulted in neural differentiation of Neuro2a cells. This result revealed that dioxins may affect the nervous system through the AhR-signaling pathway. Activated AhR may disrupt the strictly regulated brain formation with irregular differentiation occurring rather than cell death

    Hox Paralog Group 2 Genes Control the Migration of Mouse Pontine Neurons through Slit-Robo Signaling

    Get PDF
    The pontine neurons (PN) represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP) and dorsoventral (DV) axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the AP axis. Here, we show that Hoxa2 and Hoxb2 are required both intrinsically and extrinsically to maintain normal AP migration of subsets of PN, by preventing their premature ventral attraction towards the midline. Moreover, the migration defects observed in Hoxa2 and Hoxb2 mutant mice were phenocopied in compound Robo1;Robo2, Slit1;Slit2, and Robo2;Slit2 knockout animals, indicating that these guidance molecules act downstream of Hox genes to control PN migration. Indeed, using chromatin immunoprecipitation assays, we further demonstrated that Robo2 is a direct target of Hoxa2 in vivo and that maintenance of high Robo and Slit expression levels was impaired in Hoxa2 mutant mice. Lastly, the analysis of Phox2b-deficient mice indicated that the facial motor nucleus is a major Slit signaling source required to prevent premature ventral migration of PN. These findings provide novel insights into the molecular control of neuronal migration from transcription factor to regulation of guidance receptor and ligand expression. Specifically, they address the question of how exposure to multiple guidance cues along the AP and DV axes is regulated at the transcriptional level and in turn translated into stereotyped migratory responses during tangential migration of neurons in the developing mammalian brain

    Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life

    Full text link
    corecore