483 research outputs found

    RTSim: A cycle-accurate simulator for racetrack memories

    Get PDF
    Racetrack memories (RTMs) have drawn considerable attention from computer architects of late. Owing to the ultra-high capacity and comparable access latency to SRAM, RTMs are promising candidates to revolutionize the memory subsystem. In order to evaluate their performance and suitability at various levels in the memory hierarchy, it is crucial to have RTM-specific simulation tools that accurately model their behavior and enable exhaustive design space exploration. To this end, we propose RTSim, an open source cycle-accurate memory simulator that enables performance evaluation of the domain-wall-based racetrack memories. The skyrmions-based RTMs can also be modeled with RTSim because they are architecturally similar to domain-wall-based RTMs. RTSim is developed in collaboration with physicists and computer scientists. It accurately models RTM-specific shift operations, access ports management and the sequence of memory commands beside handling the routine read/write operations. RTSim is built on top of NVMain2.0, offering larger design space for exploration

    Shiftsreduce: Minimizing shifts in racetrack memory 4.0

    Get PDF
    Racetrack memories (RMs) have significantly evolved since their conception in 2008, making them a serious contender in the field of emerging memory technologies. Despite key technological advancements, the access latency and energy consumption of an RM-based system are still highly influenced by the number of shift operations. These operations are required to move bits to the right positions in the racetracks. This article presents data-placement techniques for RMs that maximize the likelihood that consecutive references access nearby memory locations at runtime, thereby minimizing the number of shifts. We present an integer linear programming (ILP) formulation for optimal data placement in RMs, and we revisit existing offset assignment heuristics, originally proposed for random-access memories. We introduce a novel heuristic tailored to a realistic RM and combine it with a genetic search to further improve the solution. We show a reduction in the number of shifts of up to 52.5%, outperforming the state of the art by up to 16.1%

    AveroBot: An audio-visual dataset for people re-identification and verification in human-robot interaction

    Get PDF
    Intelligent technologies have pervaded our daily life, making it easier for people to complete their activities. One emerging application is involving the use of robots for assisting people in various tasks (e.g., visiting a museum). In this context, it is crucial to enable robots to correctly identify people. Existing robots often use facial information to establish the identity of a person of interest. But, the face alone may not offer enough relevant information due to variations in pose, illumination, resolution and recording distance. Other biometric modalities like the voice can improve the recognition performance in these conditions. However, the existing datasets in robotic scenarios usually do not include the audio cue and tend to suffer from one or more limitations: most of them are acquired under controlled conditions, limited in number of identities or samples per user, collected by the same recording device, and/or not freely available. In this paper, we propose AveRobot, an audio-visual dataset of 111 participants vocalizing short sentences under robot assistance scenarios. The collection took place into a three-floor building through eight different cameras with built-in microphones. The performance for face and voice re-identification and verification was evaluated on this dataset with deep learning baselines, and compared against audio-visual datasets from diverse scenarios. The results showed that AveRobot is a challenging dataset for people re-identification and verification

    Magnetic racetrack memory: from physics to the cusp of applications within a decade

    Get PDF
    Racetrack memory (RTM) is a novel spintronic memory-storage technology that has the potential to overcome fundamental constraints of existing memory and storage devices. It is unique in that its core differentiating feature is the movement of data, which is composed of magnetic domain walls (DWs), by short current pulses. This enables more data to be stored per unit area compared to any other current technologies. On the one hand, RTM has the potential for mass data storage with unlimited endurance using considerably less energy than today's technologies. On the other hand, RTM promises an ultrafast nonvolatile memory competitive with static random access memory (SRAM) but with a much smaller footprint. During the last decade, the discovery of novel physical mechanisms to operate RTM has led to a major enhancement in the efficiency with which nanoscopic, chiral DWs can be manipulated. New materials and artificially atomically engineered thin-film structures have been found to increase the speed and lower the threshold current with which the data bits can be manipulated. With these recent developments, RTM has attracted the attention of the computer architecture community that has evaluated the use of RTM at various levels in the memory stack. Recent studies advocate RTM as a promising compromise between, on the one hand, power-hungry, volatile memories and, on the other hand, slow, nonvolatile storage. By optimizing the memory subsystem, significant performance improvements can be achieved, enabling a new era of cache, graphical processing units, and high capacity memory devices. In this article, we provide an overview of the major developments of RTM technology from both the physics and computer architecture perspectives over the past decade. We identify the remaining challenges and give an outlook on its future

    Killer-cell immunoglobulin-like receptor diversity in an admixed South American population

    Get PDF
    Natural Killer (NK) cells are innate immune cells that mediate antiviral and antitumor responses. NK cell activation and induction of effector functions are tightly regulated by the integration of activating and inhibitory receptors such as killer immunoglobulin-like receptors (KIR)

    Evaluación de un planteo intensivo de recría y engorde a corral de novillos Limousin y Angus

    Get PDF
    El objetivo del ensayo fue comparar la respuesta productiva y las características de la res resultantes de un ciclo de recría y terminación a corral de animales de raza continental respecto de animales de raza británica.EEA General VillegasFil: Elizalde, J. Actividad privada; ArgentinaFil: Riffel, Sebastián L. Actividad privada; ArgentinaFil: Castrillon, L. Martínez Arenaza e hijos S.A.; ArgentinaFil: Ceconi, Irene. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria General Villegas; Argentin
    corecore