805 research outputs found
Hybrid fuzzy and sliding-mode control for motorised tether spin-up when coupled with axial vibration
A hybrid fuzzy sliding mode controller is applied to the control of motorised tether spin-up coupled with an axial oscillation phenomenon. A six degree of freedom dynamic model of a motorised momentum exchange tether is used as a basis for interplanetary payload exchange. The tether comprises a symmetrical double payload configuration, with an outrigger counter inertia and massive central facility. It is shown that including axial elasticity permits an enhanced level of performance prediction accuracy and a useful departure from the usual rigid body representations, particularly for accurate payload positioning at strategic points. A special simulation program has been devised in MATLAB and MATHEMATICA for a given initial condition data case
Diagnosis of an anaerobic pond treating temperate domestic wastewater: An alternative sludge strategy for small works
An anaerobic pond (AP) for treatment of temperate domestic wastewater has been studied as a small works sludge management strategy to challenge existing practice which comprises solids separation followed by open sludge storage, for up to 90 days. During the study, effluent temperature ranged between 0.1 °C and 21.1 °C. Soluble COD production was noted in the AP at effluent temperatures typically greater than 10 °C and was coincident with an increase in effluent volatile fatty acids (VFA) concentration, which is indicative of anaerobic degradation. Analysis from ports sited along the AP's length, demonstrated VFA to be primarily formed nearest the inlet where most solids deposition initially incurred, and confirmed the anaerobic reduction of sludge within this chamber. Importantly, the sludge accumulation rate was 0.06 m3 capita−1 y−1 which is in the range of APs operated at higher temperatures and suggests a de-sludge interval of 2.3–3.8 years, up to 10 times longer than current practice for small works. Coincident with the solids deposition profile, biogas production was predominantly noted in the initial AP section, though biogas production increased further along the AP's length following start-up. A statistically significant increase in mean biogas production of greater than an order of magnitude was measured between winters (t(n=19) = 5.52, P < 0.001) demonstrating continued acclimation. The maximum methane yield recorded was 2630 mgCH4 PE−1 d−1, approximately fifty times greater than estimated from sludge storage (57 mgCH4 PE−1 d−1). Anaerobic ponds at small works can therefore enable sludge reduction and longer sludge holding times than present thus offsetting tanker demand whilst reducing fugitive methane emissions currently associated with sludge storage, and based on the enhanced yield noted, could provide a viable opportunity for local energy generation
Tube-side mass transfer for hollow fibre membrane contactors operated in the low Graetz range
Transformation of the tube-side mass transfer coefficient derived in hollow fibre membrane contactors (HFMC)
of different characteristic length scales (equivalent diameter and fibre length) has been studied when operated
in the low Graetz range (Gz < 10). Within the low Gz range, mass transfer is generally described by the Graetz
problem (Sh=3.67) which assumes that the concentration profile comprises a constant shape over the fibre
radius. In this study, it is experimentally evidenced that this assumption over predicts mass transfer within the
low Graetz range. Furthermore, within the low Gz range (below 2), a proportional relationship between the
experimentally determined mass transfer coefficient (Kov) and the Graetz number has been identified. For Gz
numbers below 2, the experimental Sh number approached unity, which suggests that mass transfer is strongly
dependent upon diffusion. However, within this diffusion controlled region of mass transfer, tube-side fluid
velocity remained important. For Gz numbers above 2, Sh could be satisfactorily described by extension to the
Lévêque solution, which can be ascribed to the constrained growth of the concentration boundary layer adjacent
to the fibre wall. Importantly this study demonstrates that whilst mass transfer in the low Graetz range does not
explicitly conform to either the Graetz problem or classical Lévêque solution, it is possible to transform the
experimentally derived overall mass transfer coefficient (Kov) between characteristic length scales (dh and L).
This was corroborated by comparison of the empirical relationship determined in this study (Sh=0.36Gz) with
previously published studies operated in the low Gz range. This analysis provides important insight for process
design when slow tube-side flows, or low Schmidt numbers (coincident with gases) constrain operation of
hollow fibre membrane contactors to the low Gz range
Speciation and fate of copper in sewage treatment works with and without tertiary treatment: The effect of return flows
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Taylor & Francis.The removal of metals from wastewaters is becoming an important issue, with new environmental quality standards putting increased regulatory pressure on operators of sewage treatment works. The use of additional processes (tertiary treatment) following two-stage biological treatment is frequently seen as a way of improving effluent quality for nutrients and suspended solids, and this study investigates the impact of how back washes from these tertiary processes may impact the removal of copper during primary sedimentation. Seven sites were studied, three conventional two-stage biological treatment, and four with tertiary processes. It was apparent that fluxes of copper in traditional return flows made a significant contribution to the load to the primary treatment tanks, and that<1% of this was in the dissolved phase. Where tertiary processes were used, back wash liquors were also returned to the primary tanks. These return flows had an impact on copper removal in the primary tanks, probably due to their aerobic nature. Returning such aerobic back wash flows to the main process stream after primary treatment may therefore be worth consideration. The opportunity to treat consolidated liquor and sludge flows in side-stream processes to remove toxic elements, as they are relatively concentrated, low volume flow streams, should also be evaluated
Mercury and antimony in wastewater: fate and treatment
It is important to understand the fate of Hg and Sb within the wastewater treatment process so as to examine potential treatment options and to ensure compliance with regulatory standards. The fate of Hg and Sb was investigated for an activated sludge process treatment works in the UK. Relatively high crude values (Hg 0.092 μg/L, Sb 1.73 μg/L) were observed at the works, whilst low removal rates within the primary (Hg 52.2 %, Sb 16.3 %) and secondary treatment stages (Hg 29.5 %, Sb −28.9 %) resulted in final effluent concentrations of 0.031 μg/L for Hg and 2.04 μg/L for Sb. Removal of Hg was positively correlated with suspended solids (SS) and chemical oxygen demand (COD) removal, whilst Sb was negatively correlated. Elevated final effluent Sb concentrations compared with crude values were postulated and were suggested to result from Sb present in returned sludge liquors. Kepner Tregoe (KT) analysis was applied to identify suitable treatment technologies. For Hg, chemical techniques (specifically precipitation) were found to be the most suitable whilst for Sb, adsorption (using granulated ferric hydroxide) was deemed most appropriate. Operational solutions, such as lengthening hydraulic retention time, and treatment technologies deployed on sludge liquors were also reviewed but were not feasible for implementation at the works
The Suaineadh Project : a stepping stone towards the deployment of large flexible structures in space
The Suaineadh project aims at testing the controlled deployment and stabilization of space web. The deployment system is based on a simple yet ingenious control of the centrifugal force that will pull each of the four daughters sections apart. The four daughters are attached onto the four corners of a square web, and will be released from their initial stowed configuration attached to a central hub. Enclosed in the central hub is a specifically designed spinning reaction wheel that controls the rotational speed with a closed loop control fed by measurements from an onboard inertial measurement sensor. Five other such sensors located within the web and central hub provide information on the surface curvature of the web, and progression of the deployment. Suaineadh is currently at an advanced stage of development: all the components are manufactured with the subsystems integrated and are presently awaiting full integration and testing. This paper will present the current status of the Suaineadh project and the results of the most recent set of tests. In particular, the paper will cover the overall mechanical design of the system, the electrical and sensor assemblies, the communication and power systems and the spinning wheel with its control system
Mathematical modelling of fibre-enhanced perfusion inside\ud a tissue-engineering bioreactor
We develop a simple mathematical model for forced flow of culture medium through a porous scaffold in a tissue- engineering bioreactor. Porous-walled hollow fibres penetrate the scaffold and act as additional sources of culture medium. The model, based on Darcy’s law, is used to examine the nutrient and shear-stress distributions throughout the scaffold. We consider several configurations of fibres and inlet and outlet pipes. Compared with a numerical solution of the full Navier–Stokes equations within the complex scaffold geometry, the modelling approach is cheap, and does not require knowledge of the detailed microstructure of the particular scaffold being used. The potential of this approach is demonstrated through quantification of the effect the additional flow from the fibres has on the nutrient and shear-stress distribution
Kripke Semantics for Martin-L\"of's Extensional Type Theory
It is well-known that simple type theory is complete with respect to
non-standard set-valued models. Completeness for standard models only holds
with respect to certain extended classes of models, e.g., the class of
cartesian closed categories. Similarly, dependent type theory is complete for
locally cartesian closed categories. However, it is usually difficult to
establish the coherence of interpretations of dependent type theory, i.e., to
show that the interpretations of equal expressions are indeed equal. Several
classes of models have been used to remedy this problem. We contribute to this
investigation by giving a semantics that is standard, coherent, and
sufficiently general for completeness while remaining relatively easy to
compute with. Our models interpret types of Martin-L\"of's extensional
dependent type theory as sets indexed over posets or, equivalently, as
fibrations over posets. This semantics can be seen as a generalization to
dependent type theory of the interpretation of intuitionistic first-order logic
in Kripke models. This yields a simple coherent model theory, with respect to
which simple and dependent type theory are sound and complete
Removal of steroid estrogens in carbonaceous and nitrifying activated sludge processes
This is the post-print version of the final paper published in Chemosphere. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.A carbonaceous (heterotrophic) activated sludge process (ASP), nitrifying ASP and a nitrifying/denitrifying ASP have been studied to examine the role of process type in steroid estrogen removal. Biodegradation efficiencies for total steroid estrogens (ΣEST) of 80 and 91% were recorded for the nitrifying/denitrifying ASP and nitrifying ASP respectively. Total estrogen biodegradation (ΣEST) was only 51% at the carbonaceous ASP, however, the extent of biodegradation in the absence of nitrification clearly indicates the important role of heterotrophs in steroid estrogen removal. The low removal efficiency did not correlate with biomass activity for which the ASPcarbonaceous recorded 80 μg kg−1 biomass d−1 compared to 61 and 15 μg kg−1 biomass d−1 at the ASPnitrifying and ASPnitrifying/denitrifying respectively. This finding was explained by a moderate correlation (r2 = 0.55) between total estrogen loading (ΣEST mg m−3 d−1) and biomass activity (μg ΣEST degraded kg−1 d−1) and has established the impact of loading on steroid estrogen removal at full-scale. At higher solids retention time (SRT), steroid estrogen biodegradation of >80% was observed, as has previously been reported. It is postulated that hydraulic retention time (HRT) is as important as SRT as this governs both reaction time and loading. This observation is based on the high specific estrogen activity determined at the ASPcarbonaceous plant, the significance of estrogen loading and the positive linear correlation between SRT and HRT.Public Utilities Board of Singapore, Anglian Water Ltd., Severn Trent Water Ltd., Thames Water Utilities Ltd., United Utilities Plc., and Yorkshire Water Services Ltd
- …
