701 research outputs found

    A novel method for evaluating the critical nucleus and the surface tension in systems with first order phase transition

    Full text link
    We introduce a novel method for calculating the size of the critical nucleus and the value of the surface tension in systems with first order phase transition. The method is based on classical nucleation theory, and it consists in studying the thermodynamics of a sphere of given radius embedded in a frozen metastable surrounding. The frozen configuration creates a pinning field on the surface of the free sphere. The pinning field forces the sphere to stay in the metastable phase as long as its size is smaller than the critical nucleus. We test our method in two first-order systems, both on a two-dimensional lattice: a system where the parameter tuning the transition is the magnetic field, and a second system where the tuning parameter is the temperature. In both cases the results are satisfying. Unlike previous techniques, our method does not require an infinite volume limit to compute the surface tension, and it therefore gives reliable estimates even by using relatively small systems. However, our method cannot be used at, or close to, the critical point, i.e. at coexistence, where the critical nucleus becomes infinitely large.Comment: 12 pages, 15 figure

    Judicial Examination of Deregulation: Exploring the Boundaries of Executive Discretion

    Get PDF

    Patch-repetition correlation length in glassy systems

    Full text link
    We obtain the patch-repetition entropy Sigma within the Random First Order Transition theory (RFOT) and for the square plaquette system, a model related to the dynamical facilitation theory of glassy dynamics. We find that in both cases the entropy of patches of linear size l, Sigma(l), scales as s_c l^d+A l^{d-1} down to length-scales of the order of one, where A is a positive constant, s_c is the configurational entropy density and d the spatial dimension. In consequence, the only meaningful length that can be defined from patch-repetition is the cross-over length xi=A/s_c. We relate xi to the typical length-scales already discussed in the literature and show that it is always of the order of the largest static length. Our results provide new insights, which are particularly relevant for RFOT theory, on the possible real space structure of super-cooled liquids. They suggest that this structure differs from a mosaic of different patches having roughly the same size.Comment: 6 page

    Surface tension fluctuations and a new spinodal point in glass-forming liquids

    Full text link
    The dramatic slowdown of glass-forming liquids has been variously linked to increasing dynamic and static correlation lengths. Yet, empirical evidence is insufficient to decide among competing theories. The random first order theory (RFOT) links the dynamic slowdown to the growth of amorphous static order, whose range depends on a balance between configurational entropy and surface tension. This last quantity is expected to vanish when the temperature surpasses a spinodal point beyond which there are no metastable states. Here we measure for the first time the surface tension in a model glass-former, and find that it vanishes at the energy separating minima from saddles, demonstrating the existence of a spinodal point for amorphous metastable order. Moreover, the fluctuations of surface tension become smaller for lower temperatures, in quantitative agreement with recent theoretical speculation that spatial correlations in glassy systems relax nonexponentially because of the narrowing of the surface tension distribution.Comment: 6 pages, 5 figure

    Numerical simulations of liquids with amorphous boundary conditions

    Full text link
    It has recently become clear that simulations under amorphpous boundary conditions (ABCs) can provide valuable information on the dynamics and thermodynamics of disordered systems with no obvious ordered parameter. In particular, they allow to detect a correlation length that is not measurable with standard correlation functions. Here we explain what exactly is meant by ABCs, discuss their relation with point-to-set correlations and briefly describe some recent results obtained with this technique.Comment: Presented at STATPHYS 2

    Towards an Achievable Performance for the Loop Nests

    Full text link
    Numerous code optimization techniques, including loop nest optimizations, have been developed over the last four decades. Loop optimization techniques transform loop nests to improve the performance of the code on a target architecture, including exposing parallelism. Finding and evaluating an optimal, semantic-preserving sequence of transformations is a complex problem. The sequence is guided using heuristics and/or analytical models and there is no way of knowing how close it gets to optimal performance or if there is any headroom for improvement. This paper makes two contributions. First, it uses a comparative analysis of loop optimizations/transformations across multiple compilers to determine how much headroom may exist for each compiler. And second, it presents an approach to characterize the loop nests based on their hardware performance counter values and a Machine Learning approach that predicts which compiler will generate the fastest code for a loop nest. The prediction is made for both auto-vectorized, serial compilation and for auto-parallelization. The results show that the headroom for state-of-the-art compilers ranges from 1.10x to 1.42x for the serial code and from 1.30x to 1.71x for the auto-parallelized code. These results are based on the Machine Learning predictions.Comment: Accepted at the 31st International Workshop on Languages and Compilers for Parallel Computing (LCPC 2018

    Cluster expansion for abstract polymer models. New bounds from an old approach

    Full text link
    We revisit the classical approach to cluster expansions, based on tree graphs, and establish a new convergence condition that improves those by Kotecky-Preiss and Dobrushin, as we show in some examples. The two ingredients of our approach are: (i) a careful consideration of the Penrose identity for truncated functions, and (ii) the use of iterated transformations to bound tree-graph expansions.Comment: 16 pages. This new version, written en reponse to the suggestions of the referees, includes more detailed introductory sections, a proof of the generalized Penrose identity and some additional results that follow from our treatmen

    Kerlan-Jobe Orthopaedic Clinic overhead athlete scores in asymptomatic professional baseball pitchers.

    Get PDF
    BACKGROUND: The Kerlan-Jobe Orthopaedic Clinic (KJOC) Shoulder and Elbow score is a subjective questionnaire that has been validated and been shown to be more specific in overhead athletes than the American Shoulder and Elbow Surgeons scale. The purpose of this study was to determine a mean KJOC score and reasonable range of KJOC scores within which a healthy asymptomatic professional baseball pitcher will fall. It was hypothesized that healthy professional baseball pitchers would have very high KJOC scores. MATERIALS AND METHODS: KJOC questionnaires were given to all healthy pitchers before the start of the season at all levels in 1 professional Minor League system. Pitchers were asked to complete the questionnaire upon reporting to their AAA, AA, or A affiliate team. Any pitcher starting the season on the disabled list was excluded from the study. RESULTS: KJOC scores were returned by 44 pitchers. The mean score for all pitchers was 94.82 (95% confidence interval, 92.94-96.70). The mean score for each question was greater than 9 of 10. The mean score for the AAA affiliate was significantly higher than that for the AA affiliate (P = .015). No other significant differences in scores were found between class levels or groups based on professional playing experience. CONCLUSION: Only 7 of 44 healthy asymptomatic pitchers (16%) had a KJOC score below 90. Therefore, we believe that the KJOC score is an accurate assessment for overhead athletes and normal values should be greater than 90. Anything below this value could be a potential cause for concern for team physicians. LEVEL OF EVIDENCE: Basic Science, Survey Study, Healthy Subjects

    FETR-ALS Study Protocol: A Randomized Clinical Trial of Fecal Microbiota Transplantation in Amyotrophic Lateral Sclerosis

    Get PDF
    Background and Rationale: Among the key players in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS), microglia and T regulatory lymphocytes (Treg) are candidate cells for modifying the course of the disease. The gut microbiota (GM) acts by shaping immune tolerance and regulating the Treg number and suppressive function, besides circulating neuropeptides, and other immune cells that play in concert through the gut-brain axis. Previous mouse models have shown an altered enteric flora in early stage ALS, pointing to a possible GM role in ALS pathogenesis. Fecal Microbial Transplantation (FMT) is a well-known therapeutic intervention used to re-establish the proper microenvironment and to modulate enteric and systemic immunity. Methods: We are going to perform a multicenter randomized double-blind clinical trial employing FMT as a therapeutic intervention for ALS patients (NCT0376632). Forty-two ALS patients, at an early stage, will be enrolled with a 2:1 allocation ratio (28 FMT-treated patients vs. 14 controls). Study duration will be 12 months per patient. Three endoscopic procedures for intestinal biopsies in FMT and control groups are predicted at baseline, month 6 and month 12; at baseline and at month 6 fresh feces from healthy donors will be infused at patients in the intervention arm. The primary outcome is a significant change in Treg number between FMT-treated patients and control arm from baseline to month 6. Secondary outcomes include specific biological aims, involving in-depth analysis of immune cells and inflammatory status changes, central and peripheral biomarkers of ALS, besides comprehensive analysis of the gut, saliva and fecal microbiota. Other secondary aims include validated clinical outcomes of ALS (survival, forced vital capacity, and modifications in ALSFRS-R), besides safety and quality of life. Expected Results: We await FMT to increase Treg number and suppressive functionality, switching the immune system surrounding motorneurons to an anti-inflammatory, neuroprotective status. Extensive analysis on immune cell populations, cytokines levels, and microbiota (gut, fecal and saliva) will shed light on early processes possibly leading the degenerative ALS course. Conclusions: This is the first trial with FMT as a potential intervention to modify immunological response to ALS and disease progression at an early stage
    • …
    corecore