1,594 research outputs found
Heat and extension at mid- and lower crustal levels of the Rio Grande rift
The process by which large amounts (50 to 200 percent) of crustal extension are produced was concisely described by W. Hamilton in 1982 and 1983. More recently, England, Sawyer, P. Morgan and others have moved toward quantifying models of lithospheric thinning by incorporating laboratory and theoretical data on rock rheology as a function of composition, temperature, and strain rate. Hamilton's description identifies three main crustal layers, each with a distinctive mechanical behavior; brittle fracturing and rotation in the upper crust, discontinuous ductile flow in the middle crust and laminar ductile flow in the lower crust. The temperature and composition dependent brittle-ductile transition essentially defines the diffuse boundary between upper and middle crust. It was concluded that the heat responsible for the highly ductile nature of the lower crust and the lensoidal and magma body structures at mid-crustal depths in the rift was infused into the crust by relatively modest ( 10 percent by mass) magmatic upwelling (feeder dikes) from Moho levels. Seismic velocity-versus-depth data, supported by gravity modeling and the fact that volumes of rift related volcanics are relatively modest ( 6000 cubic km) for the Rio Grande system, all imply velocities and densities too small to be consistent with a massive, composite, mafic intrusion in the lower crust
Fourier phase and pitch-class sum
Music theorists have proposed two very different geometric models of musical objects, one based on voice leading and the other based on the Fourier transform. On the surface these models are completely different, but they converge in special cases, including many geometries that are of particular analytical interest.Accepted manuscrip
An Alternative Interpretation of Statistical Mechanics
In this paper I propose an interpretation of classical statistical mechanics that centers on taking seriously the idea that probability measures represent complete states of statistical mechanical systems. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is associated directly with the observables of the theory rather than with the microstates (as traditional accounts would have it). The usual assumption that microstates are representationally significant in the theory is therefore dispensable, a consequence which suggests interesting possibilities for developing non-equilibrium statistical mechanics and investigating inter-theoretic answers to the foundational questions of statistical mechanics
Alumoxane/ferroxane nanoparticles for the removal of viral pathogens: the importance of surface functionality to nanoparticle activity
A bi-functional nano-composite coating has been created on a porous Nomex fabric support as a trap
for aspirated virus contaminated water. Nomex fabric was successively dip-coated in solutions
containing cysteic acid functionalized alumina (alumoxane) nanoparticles and cysteic acid
functionalized iron oxide (ferroxane) nanoparticles to form a nanoparticle coated Nomex (NPN)
fabric. From SEM and EDX the nanoparticle coating of the Nomex fibers is uniform, continuous,
and conformal. The NPN was used as a filter for aspirated bacteriophage MS2 viruses using end-on
filtration. All measurements were repeated to give statistical reliability. The NPN fabrics show a large
decrease as compared to Nomex alone or alumoxane coated Nomex . An increase in the ferroxane
content results in an equivalent increase in virus retention. This suggests that it is the ferroxane that has
an active role in deactivating and/or binding the virus. Heating the NPN to 160 C results in the loss of
cysteic acid functional groups (without loss of the iron nanoparticleメs core structure) and the resulting
fabric behaves similar to that of untreated Nomex , showing that the surface functionalization of the
nanoparticles is vital for the surface collapse of aspirated water droplets and the absorption and
immobilization of the MS2 viruses. Thus, for virus immobilization, it is not sufficient to have iron oxide
nanoparticles per se, but the surface functionality of a nanoparticle is vitally important in ensuring
efficacy
T and CPT Symmetries in Entangled Neutral Meson Systems
Genuine tests of an asymmetry under T and/or CPT transformations imply the
interchange between in-states and out-states. I explain a methodology to
perform model-indepedent separate measurements of the three CP, T and CPT
symmetry violations for transitions involving the decay of the neutral meson
systems in B- and {\Phi}-factories. It makes use of the quantum-mechanical
entanglement only, for which the individual state of each neutral meson is not
defined before the decay of its orthogonal partner. The final proof of the
independence of the three asymmetries is that no other theoretical ingredient
is involved and that the event sample corresponding to each case is different
from the other two. The experimental analysis for the measurements of these
three asymmetries as function of the time interval {\Delta}t > 0 between the
first and second decays is discussed, as well as the significance of the
expected results. In particular, one may advance a first observation of true,
direct, evidence of Time-Reserval-Violation in B-factories by many standard
deviations from zero, without any reference to, and independent of,
CP-Violation. In some quantum gravity framework the CPT-transformation is
ill-defined, so there is a resulting loss of particle-antiparticle identity.
This mechanism induces a breaking of the EPR correlation in the entanglement
imposed by Bose statistics to the neutral meson system, the so-called
{\omega}-effect. I present results and prospects for the {\omega}-parameter in
the correlated neutral meson-antimeson states.Comment: Proc. DISCRETE 2010, Symposium on Prospects in the Physics of
Discrete Symmetries, December 2010, Rom
Raman microscopy of lithium-manganese-rich transition metal oxide cathodes
Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi2MnO3 • (1- x)LiMO2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this study, Raman microscopy is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. The results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets
Higher education, mature students and employment goals: policies and practices in the UK
This article considers recent policies of Higher Education in the UK, which are aimed at widening participation and meeting the needs of employers. The focus is on the growing population of part-time students, and the implications of policies for this group. The article takes a critical perspective on government policies, using data from a major study of mature part-time students, conducted in two specialist institutions in the UK, a London University college and a distance learning university. Findings from this study throw doubt on the feasibility of determining a priori what kind of study pathway is most conducive for the individual in terms of employment gains and opportunities for upward social mobility. In conclusion, doubts are raised as to whether policies such as those of the present UK government are likely to achieve its aims. Such policies are not unique to the UK, and lessons from this country are relevant to most of the developed world
HLA and cross-reactive antigen group matching for cadaver kidney allocation
Background. Allocation of cadaver kidneys by graded human leukocyte antigen (HLA) compatibility scoring arguably has had little effect on overall survival while prejudicing the transplant candidacy of African-American and other hard to match populations. Consequently, matching has been proposed of deduced amino acid residues of the individual HLA molecules shared by cross- reactive antigen groups (CREGs). We have examined the circumstances under which compatibility with either method impacted graft survival. Methods. Using Cox proportional hazards regression modeling, we studied the relationship between levels of conventional HLA mismatch and other donor and recipient factors on primary cadaver kidney survival between 1981 and 1995 at the University of Pittsburgh (n=1,780) and in the United Network for Organ Sharing (UNOS) Scientific Registry during 1991-1995 (n=31,291). The results were compared with those obtained by the matching of amino acid residues that identified CREG-compatible cases with as many as four (but not five and six) HLA mismatches. Results. With more than one HLA mismatch (>85% of patients in both series), most of the survival advantage of a zero mismatch was lost. None of the HLA loci were 'weak.' In the UNOS (but not Pittsburgh) category of one-HLA mismatch (n=1334), a subgroup of CREG-matched recipients (35.3%) had better graft survival than the remaining 64.7%, who were CREG-mismatched. There was no advantage of a CREG match in the two- to four-HLA incompatibility tiers. Better graft survival with tacrolimus was observed in both the Pittsburgh and UNOS series. Conclusions. Obligatory national sharing of cadaver kidneys is justifiable only for zero-HLA-mismatched kidneys. The potential value of CREG matching observed in the one-HLA-mismatched recipients of the UNOS (but not the Pittsburgh) experience deserves further study
Primary biliary cirrhosis is associated with oxidative stress and endothelial dysfunction but not increased cardiovascular risk
- …
