58 research outputs found
Longitudinal Analysis of Quality of Life, Clinical, Radiographic, Echocardiographic, and Laboratory Variables in Dogs with Preclinical Myxomatous Mitral Valve Disease Receiving Pimobendan or Placebo: The EPIC Study
Background: Changes in clinical variables associated with the administration of pimobendan to dogs with preclinical myxomatous mitral valve disease (MMVD) and cardiomegaly have not been described.
Objectives: To investigate the effect of pimobendan on clinical variables and the relationship between a change in heart size and the time to congestive heart failure (CHF) or cardiac-related death (CRD) in dogs with MMVD and cardiomegaly. To determine whether pimobendan-treated dogs differ from dogs receiving placebo at onset of CHF.
Animals: Three hundred and fifty-four dogs with MMVD and cardiomegaly.
Materials and Methods: Prospective, blinded study with dogs randomized (ratio 1:1) to pimobendan (0.4-0.6 mg/kg/d) or placebo. Clinical, laboratory, and heart-size variables in both groups were measured and compared at different time points (day 35 and onset of CHF) and over the study duration. Relationships between short-term changes in echocardiographic variables and time to CHF or CRD were explored.
Results: At day 35, heart size had reduced in the pimobendan group:median change in (Delta) LVIDDN -0.06 (IQR:-0.15 to + 0.02), P < 0.0001, and LA:Ao -0.08 (IQR:-0.23 to + 0.03), P < 0.0001. Reduction in heart size was associated with increased time to CHF or CRD. Hazard ratio for a 0.1 increase in Delta LVIDDN was 1.26, P = 0.0003. Hazard ratio for a 0.1 increase in Delta LA:Ao was 1.14, P = 0.0002. At onset of CHF, groups were similar.
Conclusions and Clinical Importance: Pimobendan treatment reduces heart size. Reduced heart size is associated with improved outcome. At the onset of CHF, dogs treated with pimobendan were indistinguishable from those receiving placebo
Time spent with cats is never wasted: Lessons learned from feline acromegalic cardiomyopathy, a naturally occurring animal model of the human disease
<div><p>Background</p><p>In humans, acromegaly due to a pituitary somatotrophic adenoma is a recognized cause of increased left ventricular (LV) mass. Acromegalic cardiomyopathy is incompletely understood, and represents a major cause of morbidity and mortality. We describe the clinical, echocardiographic and histopathologic features of naturally occurring feline acromegalic cardiomyopathy, an emerging disease among domestic cats.</p><p>Methods</p><p>Cats with confirmed hypersomatotropism (IGF-1>1000ng/ml and pituitary mass; n = 67) were prospectively recruited, as were two control groups: diabetics (IGF-1<800ng/ml; n = 24) and healthy cats without known endocrinopathy or cardiovascular disease (n = 16). Echocardiography was performed in all cases, including after hypersomatotropism treatment where applicable. Additionally, tissue samples from deceased cats with hypersomatotropism, hypertrophic cardiomyopathy and age-matched controls (n = 21 each) were collected and systematically histopathologically reviewed and compared.</p><p>Results</p><p>By echocardiography, cats with hypersomatotropism had a greater maximum LV wall thickness (6.5mm, 4.1â10.1mm) than diabetic (5.9mm, 4.2â9.1mm; Mann Whitney, p<0.001) or control cats (5.2mm, 4.1â6.5mm; Mann Whitney, p<0.001). Left atrial diameter was also greater in cats with hypersomatotropism (16.6mm, 13.0â29.5mm) than in diabetic (15.4mm, 11.2â20.3mm; Mann Whitney, p<0.001) and control cats (14.0mm, 12.6â17.4mm; Mann Whitney, p<0.001). After hypophysectomy and normalization of IGF-1 concentration (n = 20), echocardiographic changes proved mostly reversible. As in humans, histopathology of the feline acromegalic heart was dominated by myocyte hypertrophy with interstitial fibrosis and minimal myofiber disarray.</p><p>Conclusions</p><p>These results demonstrate cats could be considered a naturally occurring model of acromegalic cardiomyopathy, and as such help elucidate mechanisms driving cardiovascular remodeling in this disease.</p></div
Above-ground carbon stocks, species diversity and fire dynamics in the Bateke Plateau
Savannas are heterogeneous systems characterised by a high spatial and temporal variation
in ecosystem structure. Savannas dominate the tropics, with important ecological functions,
and play a prominent role in the global carbon cycle, in particular responsible for much of its
inter-annual variability. They are shaped by resource availability, soil characteristics and
disturbance events, particularly fire. Understanding and predicting the demographic
structure and woody cover of savannas remains a challenge, as it is currently poorly
understood due to the complex interactions and processes that determine them. A predictive
understanding of savanna ecosystems is critical in the context of land use management and
global change.
Fire is an essential ecological disturbance in savannas, and forest-savanna mosaics
are maintained by fire-mediated positive feedbacks. Over half of the worldâs savannas are
found in Africa, and over a quarter Africaâs surface burns every year, with fires occurring
principally in the savanna biome. These have strong environmental and social impacts. Most
fires in Africa are anthropogenic and occur during the late dry season, but their dynamics and
effects remain understudied.
The main objective of this research is to understand the floristic composition, carbon
storage, woody cover and fire regime of the mesic savannas of the Bateke Plateau. The
Bateke Plateau is savanna-forest mosaic ecosystem, situated mainly in the Republic of Congo,
with sandy Kalahari soils and enough precipitation for potential forest establishment (1600
mm/yr). Despite occupying 89,800 km2, its ecology and ecosystem functions are poorly
understood. This study combines two approaches: firstly experimental, setting up long term
field experiments where the fire regime is manipulated, and then observational, using
remote sensing to estimate the carbon storage and study the past history of the fire regime
in the region. I established four large (25 ha) plots at two savanna sites, measured their
carbon stocks, spatial structure and floristic composition, and applied different annual fire
treatments (early and late dry season burns). These treatments were applied annually during
3 years (2015, 2016 and 2017), and the plots were re-measured every year to estimate tree
demographic rates and the identification of the key processes that impact them, including
fire and competition. Field data were combined with satellite radar data from ALOS PALSAR,
and the fire products of the MODIS satellites, to estimate carbon stocks and fire regimes for
the entire Bateke Plateau. I also analyse the underlying biophysical and anthropogenic
processes that influence the patterns in Above-Ground Woody Biomass (AGWB) and their
spatial variability in the Bateke landscape.
The total plant carbon stocks (above-ground and below-ground) were low, averaging
only 6.5 ± 0.3 MgC/ha, with grass representing over half the biomass. Soil organic matter
dominate the ecosystem carbon stocks, with 16.7 ± 0.9 Mg/ha found in the top 20 cm alone.
We identified 49 plant species (4 trees, 13 shrubs, 4 sedges, 17 forbs and 11 grass species),
with a tree hyperdominance of Hymenocardia acida, and a richer herbaceous species
composition. These savannas showed evidence of tree clustering, and also indications of
tree-tree competition. Trees had low growth rates (averaging 1.21 mm/yr), and mortality was
relatively low (3.24 %/yr) across all plots. The experiment showed that late dry season fires
significantly reduced tree growth compared to early dry season fires, but also reduced stem
mortality rates. Results show that these mesic savannas had very low tree biomass, with tree
cover held far below its climate potential closed-canopy maximum, likely due to nutrient
poor sandy soils and frequent fires.
Results from the remote sensing analysis indicated that multiple explanatory
variables had a significant effect on AGWB in the Bateke Plateau. Overall, the frequency of
fire had the largest impact on AGWB (with higher fire frequency resulting in lower AGWB),
with sand content the next most important explanatory variable (with more sand reducing
AGWB). Fires in the Bateke are very frequent, and show high seasonality. The proportion of
fires that occurred in the late dry season, though smaller predictor, was also more important
than other factors (including soil carbon proportion, whether or not the savanna area was in
a protected area, annual rainfall, or distance to the nearest town, river or road), with a larger
proportion of late dry season fires associated with a small increase in AGWB. The results give
pointers for management of the savannas of the Bateke Plateau, as well as improving our
understanding of vegetation dynamics in this understudied ecosystem and help orient policy
and conservation
Photosynthesis of a temperate fallow C3 herbaceous ecosystem: measurements and model simulations at the leaf and canopy levels
The objectives of the study were to characterize photosynthesis of temperate fallow C3 herbaceous species and examine the performance of a simple photosynthesis model (based on the Farquhar's equations) to simulate carbon fluxes at the leaf and canopy levels. The maximum rate of carboxylation at 25°C (Vm0) was estimated for sunlit leaves using in situ gas exchange data under saturating irradiance. Throughout the seasons, leaf measurements indicate that values of Vm0 were similar for the four major species of the fallow. The rate declined from March (100 Όmol m-2 s-1) to July (50 Όmol m-2 s-1) and remained almost constant until November. The maximum quantum yield estimated for Potentilla reptans L. (dominant species) was 0.082 mol(CO2) mol-1(photon absorbed), similar to values already published for C3 species. Leaf area index (LAI) increased from winter (less than 0.2 m2 m-2) to spring (up to 4 m2 m-2). Rates of canopy photosynthesis (measured with a canopy chamber) strongly depended on LAI and temperature, in addition to irradiance. They reached a maximum of 25 Όmol m-2 s-1 and were intermediate between those published for C4 grassland or cultivated species, and on woody species. At leaf level, simulations gave realistic predictions. At canopy level, the model had the ability to reproduce the effects of environmental and seasonal conditions. However, simulations underestimated the photosynthetic activity of the fallow canop
- âŠ