286 research outputs found

    Measuring soil processes in agricultural research

    Get PDF
    Soil and crop management strategies (e.g., tillage, bunding, cropping intensity, and crop sequencing) are location- and season-specific in the way they affect soil processes and resource utilization by crops. Research findings on these effects therefore need to be modeled if they are to be extrapolated to other locations wi th similar soils and climatic conditions. This manual presents practical methods for assessing management effects on such soil processes as water infiltration and erosion by water, and on water, air, and nutrient use by crops. It covers the basic elements of soil physical characterization, and deals principally with the role of soil structure on water infiltration and percolation, heat flow, aeration, and the mobility of roots and soil microorganisms. The authors discuss the agronomic and engineering practices that affect soil processes; and the effects of such strategies as contour cultivation, organic and inorganic amendments, watershed management, and soil surface manipulations are emphasized

    Mantle redox state drives outgassing chemistry and atmospheric composition of rocky planets

    Get PDF
    Volcanic degassing of planetary interiors has important implications for their corresponding atmospheres. The oxidation state of rocky interiors affects the volatile partitioning during mantle melting and subsequent volatile speciation near the surface. Here we show that the mantle redox state is central to the chemical composition of atmospheres while factors such as planetary mass, thermal state, and age mainly affect the degassing rate. We further demonstrate that mantle oxygen fugacity has an effect on atmospheric thickness and that volcanic degassing is most efficient for planets between 2 and 4 Earth masses. We show that outgassing of reduced systems is dominated by strongly reduced gases such as H2, with only smaller fractions of moderately reduced/oxidised gases (CO, H2O). Overall, a reducing scenario leads to a lower atmospheric pressure at the surface and to a larger atmospheric thickness compared to an oxidised system. Atmosphere predictions based on interior redox scenarios can be compared to observations of atmospheres of rocky exoplanets, potentially broadening our knowledge on the diversity of exoplanetary redox states

    XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia

    Get PDF
    XRCC1 is a molecular scaffold protein that assembles multi-protein complexes involved in DNA single-strand break repair1,2. Here we show that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia. Cells from a patient with mutations in XRCC1 exhibited not only reduced rates of single-strand break repair but also elevated levels of protein ADP-ribosylation. This latter phenotype is recapitulated in a related syndrome caused by mutations in the XRCC1 partner protein PNKP3,4,5 and implicates hyperactivation of poly(ADP-ribose) polymerase/s as a cause of cerebellar ataxia. Indeed, remarkably, genetic deletion of Parp1 rescued normal cerebellar ADP-ribose levels and reduced the loss of cerebellar neurons and ataxia in Xrcc1-defective mice, identifying a molecular mechanism by which endogenous single-strand breaks trigger neuropathology. Collectively, these data establish the importance of XRCC1 protein complexes for normal neurological function and identify PARP1 as a therapeutic target in DNA strand break repair-defective disease

    Diagnosis of iron deficiency in groundnut,Arachis hypogaea L.

    Get PDF
    Investigations into iron deficiency have been hindered by the lack of a satisfactory diagnostic tissue test, which in turn results from the total iron content of plant tissue commonly being an unreliable index of the iron status. Our measurements of chlorotic and normal leaves of field grown groundnut (Arachis hypogaea L.) showed that total iron was unsatisfactory as the measure of iron status of plant tissue. It was found that iron status was better assessed from an estimate of the ferrous iron content of fresh leaf materials obtained by extraction with o-phenanthroline. Extractable iron content increased with leaf age. Chlorotic buds or the first fully opened leaf always contained less than 6μg extractable-Fe/g fresh tissue

    Quantitative proteomic analysis of age-related subventricular zone proteins associated with neurodegenerative disease.

    Get PDF
    Aging is characterized by a progressive decline in the function of adult tissues which can lead to neurodegenerative disorders. However, little is known about the correlation between protein changes in the subventricular zone (SVZ) and neurodegenerative diseases with age. In the present study, neural stem cells (NSCs) were derived from the SVZ on postnatal 7 d, 1 m, and 12 m-old mice. With age, NSCs exhibited increased SA-β-gal activity and decreased proliferation and pool size in the SVZ zone, and were associated with elevated inflammatory chemokines and cytokines. Furthermore, quantitative proteomics and ingenuity pathway analysis were used to evaluate the significant age-related alterations in proteins and their functions. Some downregulated proteins such as DPYSL2, TPI1, ALDH, and UCHL1 were found to play critical roles in the neurological disease and PSMA1, PSMA3, PSMC2, PSMD11, and UCHL1 in protein homeostasis. Taken together, we have provided valuable insight into the cellular and molecular processes that underlie aging-associated declines in SVZ neurogenesis for the early detection of differences in gene expression and the potential risk of neurological disease, which is beneficial in the prevention of the diseases

    A pathological fracture and a solitary mass in the right clavicle: an unusual first presentation of HCC and the role of immunohistochemistry

    Get PDF
    <p>Absrtract</p> <p>Hepatocellular carcinoma (HCC) is an aggressive malignant tumor that occurs throughout the world. Îœetastases from hepatocellular carcinoma (HCC) were generally considered to be rare in the past, because the carcinoma had an aggressive clinical course. In our era, has been reported that extra-hepatic metastases occur in 13.5%-41.7% of HCC patients and this is considered as terminal-stage cancer. The prognosis for patients at this stage continues to be poor due to limited effective treatment. The common sites of extrahepatic metastases in patients with HCC are the lungs, regional lymph nodes, kidney, bone marrow and adrenals. We present here an extremely infrequent case of a patient, without known liver disease, in which the presenting symptom was a pathological-in retrospect-fracture of his right clavicle which wasn't properly evaluated, until he presented a bulky mass in the region 6 months later. For our patient, the added diagnostic difficulty alongside the unknown liver disease, has been that the clavicular metastases was the first presentation of any metastatic disease, rather than the more common sites of HCC spread to adjacent lung or lymph nodes.</p

    The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1

    Get PDF
    Defective responses to DNA single strand breaks underlie various neurodegenerative diseases. However, the exact role of this repair pathway during the development and maintenance of the nervous system is unclear. Using murine neural-specific inactivation of Xrcc1, a factor that is critical for the repair of DNA single strand breaks, we found a profound neuropathology that is characterized by the loss of cerebellar interneurons. This cell loss was linked to p53-dependent cell cycle arrest and occurred as interneuron progenitors commenced differentiation. Loss of Xrcc1 also led to the persistence of DNA strand breaks throughout the nervous system and abnormal hippocampal function. Collectively, these data detail the in vivo link between DNA single strand break repair and neurogenesis and highlight the diverse consequences of specific types of genotoxic stress in the nervous system

    Requirement of Mouse BCCIP for Neural Development and Progenitor Proliferation

    Get PDF
    Multiple DNA repair pathways are involved in the orderly development of neural systems at distinct stages. The homologous recombination (HR) pathway is required to resolve stalled replication forks and critical for the proliferation of progenitor cells during neural development. BCCIP is a BRCA2 and CDKN1A interacting protein implicated in HR and inhibition of DNA replication stress. In this study, we determined the role of BCCIP in neural development using a conditional BCCIP knock-down mouse model. BCCIP deficiency impaired embryonic and postnatal neural development, causing severe ataxia, cerebral and cerebellar defects, and microcephaly. These development defects are associated with spontaneous DNA damage and subsequent cell death in the proliferative cell populations of the neural system during embryogenesis. With in vitro neural spheroid cultures, BCCIP deficiency impaired neural progenitor's self-renewal capability, and spontaneously activated p53. These data suggest that BCCIP and its anti-replication stress functions are essential for normal neural development by maintaining an orderly proliferation of neural progenitors
    • …
    corecore