4,446 research outputs found

    Destroying coherence in high temperature superconductors with current flow

    Full text link
    The loss of single-particle coherence going from the superconducting state to the normal state in underdoped cuprates is a dramatic effect that has yet to be understood. Here, we address this issue by performing angle resolved photoemission spectroscopy (ARPES) measurements in the presence of a transport current. We find that the loss of coherence is associated with the development of an onset in the resistance, in that well before the midpoint of the transition is reached, the sharp peaks in the ARPES spectra are completely suppressed. Since the resistance onset is a signature of phase fluctuations, this implies that the loss of single-particle coherence is connected with the loss of long-range phase coherence.Comment: 7 pages, 7 figure

    On knottings in the physical Hilbert space of LQG as given by the EPRL model

    Full text link
    We consider the EPRL spin foam amplitude for arbitrary embedded two-complexes. Choosing a definition of the face- and edge amplitudes which lead to spin foam amplitudes invariant under trivial subdivisions, we investigate invariance properties of the amplitude under consistent deformations, which are deformations of the embedded two-complex where faces are allowed to pass through each other in a controlled way. Using this surprising invariance, we are able to show that in the physical Hilbert space as defined by the sum over all spin foams contains no knotting classes of graphs anymore.Comment: 22 pages, 14 figure

    The Fermi surface of Bi2Sr2CaCu2O8

    Full text link
    We study the Fermi surface of Bi2Sr2CaCu2O8 (Bi2212) using angle resolved photoemission (ARPES) with a momentum resolution of ~ 0.01 of the Brillouin zone. We show that, contrary to recent suggestions, the Fermi surface is a large hole barrel centered at (pi,pi), independent of the incident photon energy.Comment: 4 pages (revtex), 4 figures (eps, 2 color

    Nanometer Scale Mapping of the Density of States in an Inhomogeneous Superconductor

    Full text link
    Using high speed scanning tunneling spectroscopy, we perform a full mapping of the quasiparticle density of states (DOS) in single crystals of BiPbSrCaCuO(2212). The measurements carried out at 5 K showed a complex spatial pattern of important variations of the local DOS on the nanometer scale. Superconducting areas are co-existing with regions of a smooth and larger gap-like DOS structure. The superconducting regions are found to have a minimum size of about 3 nm. The role of Pb-introduced substitutional disorder in the observed spatial variations of the local DOS is discussed.Comment: 4 page Letter with 3 figures (2 color figures

    Calculations of Arctic ozone chemistry using objectively analyzed data in a 3-D CTM

    Get PDF
    A three-dimensional chemical transport model (CTM) (Kaminski, 1992) has been used to study the evolution of the Arctic ozone during the winter of 1992. The continuity equation has been solved using a spectral method with Rhomboidal 15 (R15) truncation and leap-frog time stepping. Six-hourly meteorological fields from the Canadian Meteorological Center global objective analysis routines run at T79 were degraded to the model resolution. In addition, they were interpolated to the model time grid and were used to drive the model from the surface to 10 mb. In the model, processing of Cl(x) occurred over Arctic latitudes but some of the initial products were still present by mid-January. Also, the large amounts of ClO formed in the model in early January were converted to ClNO3. The results suggest that the model resolution may be insufficient to resolve the details of the Arctic transport during this time period. In particular, the wind field does not move the ClO(x) 'cloud' to the south over Europe as seen in the MLS measurements

    The change of Fermi surface topology in Bi2Sr2CaCu2O8 with doping

    Get PDF
    We report the observation of a change in Fermi surface topology of Bi2Sr2CaCu2O8 with doping. By collecting high statistics ARPES data from moderately and highly overdoped samples and dividing the data by the Fermi function, we answer a long standing question about the Fermi surface shape of Bi2Sr2CaCu2O8 close to the (pi,0) point. For moderately overdoped samples (Tc=80K) we find that both the bonding and antibonding sheets of the Fermi surface are hole-like. However for a doping level corresponding to Tc=55K we find that the antibonding sheet becomes electron-like. This change does not directly affect the critical temperature and therefore the superconductivity. However, since similar observations of the change of the topology of the Fermi surface were observed in LSCO and Bi2Sr2Cu2O6, it appears to be a generic feature of hole-doped superconductors. Because of bilayer splitting, though, this doping value is considerably lower than that for the single layer materials, which again argues that it is unrelated to Tc

    Relatively Complete Verification of Probabilistic Programs: An Expressive Language for Expectation-Based Reasoning

    Get PDF
    We study a syntax for specifying quantitative “assertions” - functions mapping program states to numbers - for probabilistic program verification. We prove that our syntax is expressive in the following sense: Given any probabilistic program C, if a function f is expressible in our syntax, then the function mapping each initial state σ to the expected value of f evaluated in the final states reached after termination C on σ (also called the weakest preexpectation wp[C](f)) is also expressible in our syntax. As a consequence, we obtain a relatively complete verification system for verifying expected values and probabilities in the sense of Cook: Apart from a single reasoning step about the inequality of two functions given as syntactic expressions in our language, given f, g, and C, we can check whether g ≤ wp[C](f)

    Performance of a GridPix detector based on the Timepix3 chip

    Full text link
    A GridPix readout for a TPC based on the Timepix3 chip is developed for future applications at a linear collider. The GridPix detector consists of a gaseous drift volume read out by a single Timepix3 chip with an integrated amplification grid. Its performance is studied in a test beam with 2.5 GeV electrons. The GridPix detector detects single ionization electrons with high efficiency. The Timepix3 chip allowed for high sample rates and time walk corrections. Diffusion is found to be the dominating error on the track position measurement both in the pixel plane and in the drift direction, and systematic distortions in the pixel plane are below 10 μ\mum. Using a truncated sum, an energy loss (dE/dx) resolution of 4.1% is found for an effective track length of 1 m.Comment: To be published in Nuclear Instruments and Methods in Physics Research Section
    corecore