33 research outputs found

    Netzwerk Lebenszyklusdaten

    Get PDF

    Life cycle-based environmental impacts of energy system transformation strategies for Germany: Are climate and environmental protection conflicting goals?

    Get PDF
    In the development of climate-friendly energy system transformation strategies it is often ignored that environmental protection encompasses more than climate protection alone. There is therefore a risk of developing transformation strategies whose climate friendliness comes at the expense of higher other environmental impacts. Consequently, an assessment of environmental impacts of energy system transformation strategies is required if undesired environmental side effects of the energy system transformation are to be avoided and transformation strategies are to be developed that are both climate and environmentally friendly. In this paper, ten structurally different transformation strategies for the German energy system were re-modeled (in a harmonized manner). Five of these scenarios describe pathways for a reduction of direct, energy related CO2_2 emissions by 80%, the other five by 95%. Life cycle-based environmental impacts of the scenarios were assessed by coupling the scenario results with data from a life cycle inventory database focusing on energy and transport technologies. The results show that the transformation to a climate-friendly energy system reduces environmental impacts in many impact categories. However, exceptions occur with respect to the consumption of mineral resources, land use and certain human health indicators, which could increase with decreasing CO2_2 emissions. The comparison of environmental impacts of moderately ambitious strategies (80% CO2_2 reduction) with very ambitious strategies (95% CO2_2 reduction) shows that there is a risk of increasing environmental impacts with increasing climate protection, although very ambitious strategies do not necessarily come along with higher environmental impacts than moderately ambitious strategies. A reduction of environmental impacts could be achieved by a moderate and – as far as possible – direct electrification of heat and transport, a balanced technology mix for electricity generation, by reducing the number and size of passenger cars and by reducing the environmental impacts from the construction of these vehicles

    Elastic Tensor of YNi_2B_2C

    Full text link
    The complete elastic tensor of YNi_2B_2C was determined by application of the resonant ultrasound spectroscopy technique to a single-crystal sample. Elastic constants were found to be in good agreement with partial results obtained from `time-of-flight' measurements performed on samples cut from the same ingot. From the measured constants, the bulk modulus and Debye temperature are calculated.Comment: 5 pages, 3 figure

    Integrated multidimensional sustainability assessment of energy system transformation pathways

    Get PDF
    Sustainable development embraces a broad spectrum of social, economic and ecological aspects. Thus, a sustainable transformation process of energy systems is inevitably multidimensional and needs to go beyond climate impact and cost considerations. An approach for an integrated and interdisciplinary sustainability assessment of energy system transformation pathways is presented here. It first integrates energy system modeling with a multidimensional impact assessment that focuses on life cycle-based environmental and macroeconomic impacts. Then, stakeholders’ preferences with respect to defined sustainability indicators are inquired, which are finally integrated into a comparative scenario evaluation through a multi-criteria decision analysis (MCDA), all in one consistent assessment framework. As an illustrative example, this holistic approach is applied to the sustainability assessment of ten different transformation strategies for Germany. Applying multi-criteria decision analysis reveals that both ambitious (80%) and highly ambitious (95%) carbon reduction scenarios can achieve top sustainability ranks, depending on the underlying energy transformation pathways and respective scores in other sustainability dimensions. Furthermore, this research highlights an increasingly dominant contribution of energy systems’ upstream chains on total environmental impacts, reveals rather small differences in macroeconomic effects between different scenarios and identifies the transition among societal segments and climate impact minimization as the most important stakeholder preferences

    Life cycle assessment of functional materials and devices : opportunities, challenges, and current and future trends

    Get PDF
    Functional ceramics such as piezoelectrics, thermoelectrics, magnetic materials, ionic conductors, and semiconductors are opening new frontiers that underpin numerous aspects of modern life. This widespread usage comes with a responsibility to understand what impact their mass production has on the environment. Life‐cycle assessment (LCA) is a tool employed for the identification of sustainable materials pathways through the consideration of environmental burdens of materials both during fabrication and as a final product. Although the LCA technique has been widely used for the evaluation of environmental impacts in numerous product supply chains, its application for environmental profiling of functional ceramics is now gaining attention. This paper presents a review of current developments in LCA, including existing and emerging applications with emphasis on the development and fabrication of functional materials and devices (FM&D). Selected published works on LCA of functional ceramics are discussed, highlighting the importance of adopting LCA at the design stage and/or at laboratory stage before expensive investments and resources are committed. Drawing from the extant literature, we show that the integration of environmental and sustainability principles into the overall process of FM&D manufacturing, in a way that anticipates foreseeable harmful consequences while identifying opportunities for improvement, can aid the timely communications of key findings to functional materials developers. This guides the orientation of research, development and deployment, and provides insights toward the prioritization of research activities while potentially averting unintended consequences. It is intended that the review presented will encourage the materials science community to engage with LCA to address important materials design, substitution, and optimization needs

    Sustainable Energy Supply of Mobile Machines

    No full text
    corecore