1,987 research outputs found

    Eastern gamagrass seed dormancy

    Get PDF
    Eastern gamagrass has considerable value as a forage source and conservation aid, but can be very difficult to establish because its seed does not germinate easily, even with all the necessary environmental factors present. Understanding seed dormancy in eastern gamagrass is the major objective of this work

    Coccolithophore fluxes in the open tropical North Atlantic: influence of thermocline depth, Amazon water, and Saharan dust

    Get PDF
    Coccolithophores are calcifying phytoplankton and major contributors to both the organic and inorganic oceanic carbon pumps. Their export fluxes, species composition, and seasonal patterns were determined in two sediment trap moorings (M4 at 12 degrees N, 49 degrees W and M2 at 14 degrees N, 37 degrees W) collecting settling particles synchronously from October 2012 to November 2013 at 1200 m of water depth in the open equatorial North Atlantic. The two trap locations showed a similar seasonal pattern in total coccolith export fluxes and a predominantly tropical coccolithophore settling assemblage. Species fluxes were dominated throughout the year by lower photic zone (LPZ) taxa (Florisphaera profunda, Gladiolithus flabellatus) but also included upper photic zone (UPZ) taxa (Umbellosphaera spp., Rhabdosphaera spp., Umbilicosphaera spp., Helicosphaera spp.). The LPZ flora was most abundant during fall 2012, whereas the UPZ flora was more important during summer. In spite of these similarities, the western part of the study area produced persistently higher fluxes, averaging 241 x 10(7) +/- 76 x 10(7) coccoliths m(-2) d(-1) at station M4 compared to only 66 x 10(7) +/- 31 x 10(7) coccoliths m(-2) d(-1) at station M2. Higher fluxes at M4 were mainly produced by the LPZ species, favoured by the westward deepening of the thermocline and nutricline. Still, most UPZ species also contributed to higher fluxes, reflecting enhanced productivity in the western equatorial North Atlantic. Such was the case of two marked flux peaks of the more opportunistic species Gephyrocapsa muellerae and Emiliania huxleyi in January and April 2013 at M4, indicating a fast response to the nutrient enrichment of the UPZ, probably by wind-forced mixing. Later, increased fluxes of G. oceanica and E. huxleyi in October-November 2013 coincided with the occurrence of Amazon-River-affected surface waters. Since the spring and fall events of 2013 were also accompanied by two dust flux peaks, we propose a scenario in which atmospheric dust also provided fertilizing nutrients to this area. Enhanced surface buoyancy associated with the river plume indicates that the Amazon acted not only as a nutrient source, but also as a surface density retainer for nutrients supplied from the atmosphere. Nevertheless, lower total coccolith fluxes during these events compared to the maxima recorded in November 2012 and July 2013 indicate that transient productivity by opportunistic species was less important than "background" tropical productivity in the equatorial North Atlantic. This study illustrates how two apparently similar sites in the tropical open ocean actually differ greatly in ecological and oceanographic terms. The results presented here provide valuable insights into the processes governing the ecological dynamics and the downward export of coccolithophores in the tropical North Atlantic.Netherlands Organization for Scientific Research (NWO) [822.01.008]; European Research Council (ERC) [311152]; University of Bremen; European Union [600411]info:eu-repo/semantics/publishedVersio

    Study of the general mechanism of stress corrosion of aluminum alloys and development of techniques for its detection Annual summary report, 2 Jun. 1967 - 1 Jun. 1968

    Get PDF
    Stress corrosion cracking of high strength aluminum alloys investigated by electrochemical, mechanical, and electron microscopic technique

    Function, regulation and pathological roles of the Gab/DOS docking proteins

    Get PDF
    Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease

    Alfalfa Yields from Mixtures of Dormant and Non-dormant Varieties

    Get PDF
    During the establishment year, alfalfa seedings typically yield only 40-60% of fully established stands. All alfalfa varieties grown in Iowa are classified as dormant or moderately dormant, a characteristic that is important for winter survival. However, as plants become dormant in late summer, their yield declines. Alfalfa varieties from the southwestern United States are non-dormant and continue to grow until the autumn freeze, but tend to die over winter. The objective of this experiment was to determine if including a proportion of non-dormant seed at planting could improve establishment year yield without affecting successive year yields or forage quality. The rationale for this experiment is that more plants are present in the first year of a stand than in successive years when individual plants grow larger as their crowns expand. Because of normal plant loss, we reasoned that death of non-dormant plants after the first winter might not adversely affect the yields of the remaining stand

    Genetic Mapping in Tetraploid Alfalfa: Results and Prospects

    Get PDF
    Among the difficulties of improving forages is their perennial nature, which necessarily requires long selection cycles to fully evaluate genotypes. Further, traits of particular importance—yield and winter hardiness—are difficult to assess on single plants, necessitating evaluation of progeny, which is both time consuming and expensive. Because of this, yield of many forages, and particularly alfalfa, has not improved substantially over the past 25 years (Riday and Brummer, 2002). Winter hardiness often has a negative correlation with autumn growth, although some evidence suggests this is not always true (Brummer et al., 2000). One way to overcome some of these limitations may be through the use of genetic markers to help select desirable genotypes. The objective of this experiment was to test the hypothesis that quantitative trait loci (QTL) for complex agronomic traits could be identified in a segregating tetraploid alfalfa population
    • …
    corecore