1,383 research outputs found

    Examining the Cycling Behaviour of Li-Ion Batteries Using Ultrasonic Time-of-Flight Measurements

    Get PDF
    Diagnostic systems for Li-ion batteries have become increasingly important due to the larger size, and cost of the batteries being deployed in increasingly demanding applications, including electric vehicles. Here, ultrasound acoustic time-of-flight (ToF) analysis is conducted under a range of operating conditions. Measurements are performed on a commercial pouch cell during varying discharge rates to identify a range of effects that influence the acoustic ToF measurements. The cell was examined using X-ray computed tomography to ensure no significant defects were present and to confirm the layered structure in the region being investigated, validating the signal pattern observed. Analyses of the acoustic signals obtained suggest that stresses are generated in the electrodes during both the charge and discharge of the cell with the magnitude of Young's modulus for the component materials being both a function of the state-of-charge and applied current. Characteristic responses for both electrodes during the charge/discharge cycle highlight the potential application of the technique as a real-time diagnostic tool

    Thermal Imaging of Electrochemical Power Systems: A Review

    Get PDF
    The performance and durability of electrochemical power systems are determined by a complex interdependency of many complex and interrelated factors, temperature and heat transfer being particularly important. This has led to an increasing interest in the use of thermal imaging to understand both the fundamental phenomena and effects of operation on the temperature distribution and dynamics in these systems. This review describes the application thermal imaging and related techniques to the study of electrochemical power systems with the primary focus on fuel cells and batteries. Potential opportunities and directions for future research are also highlighted, indicating the wide scope for further insights to be gleaned using infrared thermal imaging techniques

    Thermal Imaging of Electrochemical Power Systems: A Review

    Get PDF
    The performance and durability of electrochemical power systems are determined by a complex interdependency of many complex and interrelated factors, temperature and heat transfer being particularly important. This has led to an increasing interest in the use of thermal imaging to understand both the fundamental phenomena and effects of operation on the temperature distribution and dynamics in these systems. This review describes the application thermal imaging and related techniques to the study of electrochemical power systems with the primary focus on fuel cells and batteries. Potential opportunities and directions for future research are also highlighted, indicating the wide scope for further insights to be gleaned using infrared thermal imaging techniques

    Investigating the effect of thermal gradients on stress in solid oxide fuel cell anodes using combined synchrotron radiation and thermal imaging

    Get PDF
    Thermal gradients can arise within solid oxide fuel cells (SOFCs) due to start-up and shut-down, non-uniform gas distribution, fast cycling and operation under internal reforming conditions. Here, the effects of operationally relevant thermal gradients on Ni/YSZ SOFC anode half cells are investigated using combined synchrotron X-ray diffraction and thermal imaging. The combination of these techniques has identified significant deviation from linear thermal expansion behaviour in a sample exposed to a one dimensional thermal gradient. Stress gradients are identified along isothermal regions due to the presence of a proximate thermal gradient, with tensile stress deviations of up to 75Â MPa being observed across the sample at a constant temperature. Significant strain is also observed due to the presence of thermal gradients when compared to work carried out at isothermal conditions

    Acoustic time-of-flight imaging of polymer electrolyte membrane water electrolysers to probe internal structure and flow characteristics

    Get PDF
    Acoustic time-of-flight (AToF) imaging has been demonstrated as a low-cost, rapid, non-destructive, operando tool to characterize processes in the flow channels and liquid-gas diffusion layer (LGDL) of polymer electrolyte membrane water electrolysers (PEMWEs). An array of 64 piezoelectric sensors was used, with all sensors emitting input pulses and detecting the acoustic wave reflected by the sample (pulse-echo mode). The shape and intensity of this reflected waveform depends on the ratio of reflection and transmission at phase interfaces and is strongly affected by resonant scattering of acoustic waves by gas bubbles. This AToF imaging technique was deployed to produce reflection intensity maps of the anode flow-field and LGDL; by measuring the AToF response for current densities ranging from 0.00 A cm−2 to 2.00 A cm−2, a close correlation was found between the acoustic attenuation in the flow-field and the production and removal of oxygen gas through the flow channels. Furthermore, a close link between the AToF response and water thickness in the LGDL was demonstrated, as supported by literature data. The application of the AToF technique has been established as a novel way of investigating PEMWE operation and as an alternative to more complex imaging techniques such as neutron imaging

    Temporal Changes in Cd Sorption and Plant Bioavailability in Compost-Amended Soils

    Get PDF
    The application of Cd-contaminated phosphate fertiliser has enriched concentrations of this non-essential element in many agricultural soils. Consequently, concentrations of the metal in some agricultural products exceed the Maximum Limit in foods. Composts can reduce the transfer of Cd from soil to plants; however, it is unclear how long this beneficial effect endures. We aimed to determine temporal changes of phytoavailable Cd in two market garden soils (an Allophanic Orthic Granular Soil and a Recent Silt Loam). Soils were amended with either municipal green waste compost or sawdust and animal waste compost at a rate of 2.5% w/w under three incubation regimes: at 19 °C, at 30 °C, and at 30 °C with additional N added as urea at 0.6 g urea/kg soil added over 1 year. Each replicate was sampled after 1, 5, 9, 13, 21, 31, and 49 weeks, and phytoavailable Cd was estimated through 0.05 M Ca(NO3)2 extraction. Seed potato (Solanum tuberosum), ‘Nadine’ variety, was grown in the Pukekohe Allophanic Orthic Granular Soil, freshly amended with municipal compost and the same soil aged for one year. The concentration of Cd in all samples was analysed using an ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometer). The C concentration in the soil—compost mixtures decreased over the year, with the greatest decreases occurring in the soils incubated at 30 °C with added N. Unexpectedly, the concentration of Ca(NO3)2-extractable Cd in the compost-amended soils did not increase over time and in some cases even decreased. This was confirmed through a pot experiment, which showed the Cd concentration in potato was reduced by 50% in both the freshly amended soil and the amended soil aged for one year. Cadmium immobilisation in soils might be due to both the sorption of Cd by organic matter and the occlusion of sorbed Cd by oxy-hydroxides of iron and aluminium. Over 49 weeks, soluble Cd does not increase as organic matter oxidises. The application of municipal compost to soil will reduce both plant Cd solubility and plant Cd uptake for at least one year in the soils tested

    Heavy metals in suburban gardens and the implications of land-use change following a major earthquake

    Get PDF
    Numerous studies have shown that urban soils can contain elevated concentrations of heavy metals (HMs). Christchurch, New Zealand, is a relatively young city (150 years old) with a population of 390,000. Most soils in Christchurch are sub-urban, with food production in residential gardens a popular activity. Earthquakes in 2010 and 2011 have resulted in the re-zoning of 630 ha of Christchurch, with suggestions that some of this land could be used for community gardens. We aimed to determine the HM concentrations in a selection of suburban gardens in Christchurch as well as in soils identified as being at risk of HM contamination due to hazardous former land uses or nearby activities. Heavy metal concentrations in suburban Christchurch garden soils were higher than normal background soil concentrations. Some 46% of the urban garden samples had Pb concentrations higher than the residential land use national standard of 210 mg kg⁻¹, with the most contaminated soil containing 2615 mg kg⁻¹ Pb. Concentrations of As and Zn exceeded the residential land use national standards (20 mg kg⁻¹ As and 400 mg kg⁻¹ Zn) in 20% of the soils. Older neighbourhoods had significantly higher soil HM concentrations than younger neighbourhoods. Neighbourhoods developed pre-1950s had a mean Pb concentration of 282 mg kg⁻¹ in their garden soils. Soil HM concentrations should be key criteria when determining the future land use of former residential areas that have been demolished because of the earthquakes in 2010 and 2011. Redeveloping these areas as parklands or forests would result in less human HM exposure than agriculture or community gardens where food is produced and bare soil is exposed

    Diagnosing Stagnant Gas Bubbles in a Polymer Electrolyte Membrane Water Electrolyser using Acoustic Emission

    Get PDF
    The use of acoustic emission as a low-cost, non-destructive, and operando diagnostic tool has been demonstrated for a range of electrochemical energy conversion and storage devices, including polymer electrolyte membrane water electrolysers (PEMWEs) and fuel cells. In this work, an abrupt change in acoustic regime is observed during operation of a PEMWE as the current density is increased from 0.5 to 1.0 A cm^{-2}. This regime change is marked by a sudden drop in the number of acoustic hits, while hit duration, amplitude, and energy increase significantly. It is found that the change in acoustic regime coincides with a significant extension of the stagnant bubble region in the flow channels of the PEMWE, observed with high-speed optical imaging. These results demonstrate that acoustic emission can be used effectively as an operando diagnostic tool to monitor bubble formation (two-phase flow conditions) in PEMWEs, facilitating rapid testing or prototyping, and contributing to operational safety

    Recent advances in acoustic diagnostics for electrochemical power systems

    Get PDF
    Over the last decade, acoustic methods, such as acoustic emission and ultrasonic testing, have been increasingly deployed for process diagnostics and health monitoring of electrochemical power devices including batteries, fuel cells, and water electrolysers. These acoustic are non-invasive, highly sensitive, and low cost, while also providing a high level of spatial and temporal resolution, and practicality. The application of these tools in electrochemical devices is based on identifying changes in acoustic signals due to physical, structural, and electrochemical properties change within the material which are then correlated to critical processes and the health status of the devices. This review discusses recent progress in the use of acoustic methods for process and health-monitoring of major electrochemical energy conversion and storage devices. First, the fundamental concepts and principles of acoustic emission and ultrasonic testing are introduced, followed by a discussion of the range of electrochemical energy conversion and storage systems, and how acoustic techniques are being used to study relevant materials and devices. Conclusions and future perspectives highlighting some of the unique challenges and potential commercial and academic applications of the devices are also discussed. It is expected that, with further developments, acoustic techniques will form a key part of the suite of diagnostic techniques routinely used to monitor electrochemical devices across various processes including fabrication, on-board maintenance, post-mortem examination and second life or recycle decision support to aid the deployment of these devices in increasingly demanding applications

    Strategies to Reduce Non-Ventilator-Associated Hospital-Acquired Pneumonia: A Systematic Review

    Get PDF
    Background Point prevalence studies identify that pneumonia is the most common healthcare associated infection. However, non-ventilator associated healthcare associated pneumonia (NV-HAP) is both underreported and understudied. Most research conducted to date, focuses on ventilator associated pneumonia. We conducted a systematic review, to provide the latest evidence for strategies to reduce NV-HAP and describe the methodological approaches used. Methods We performed a systematic search to identify research exploring and evaluating NV-HAP preventive measures in hospitals and aged-care facilities. The electronic database Medline was searched, for peer-reviewed articles published between 1st January 1998 and 31st August 2018. An assessment of the study quality and risk of bias of included articles was conducted using the Newcastle–Ottawa Scale. Results The literature search yielded 1551 articles, with 15 articles meeting the inclusion criteria. The majority of strategies for NV-HAP prevention focussed on oral care (n = 9). Three studies evaluated a form of physical activity, such as passive movements, two studies used dysphagia screening and management; and another study evaluated prophylactic antibiotics. Most studies (n = 12) were conducted in a hospital setting. Six of the fifteen studies were randomised controlled trials. Conclusion There was considerable heterogeneity in the included studies, including the type of intervention, study design, methods and definitions used to diagnose the NV-HAP. To date, interventions to reduce NV-HAP appear to be based broadly on the themes of improving oral care, increased mobility or movement and dysphagia management
    corecore