63 research outputs found

    Baculum shape complexity correlates to metrics of post-copulatory sexual selection in Musteloidea

    Get PDF
    The penis bone, or baculum, is present in many orders of mammals, although its function is still relatively unknown, mainly due to the challenges with studying the baculum in vivo. Suggested functions include increasing vaginal friction, prolonging intromission and inducing ovulation. Since it is difficult to study baculum function directly, functional morphology can give important insights. Shape complexity techniques, in particular, are likely to offer a useful metric of baculum morphology, especially since finding homologous landmarks on such a structure is challenging. This study focuses on measuring baculum shape complexity in the Musteloidea—a large superfamily spanning a range of body sizes with well-developed, qualitatively diverse bacula. We compared two shape complexity metrics—alpha shapes and ariaDNE and conducted analyses over a range of six different coefficients, or bandwidths, in 32 species of Musteloidea. Overall, we found that shape complexity, especially at the baculum distal tip, is associated with intromission duration using both metrics. These complexities can include hooks, bifurcations and other additional projections. In addition, alpha shapes complexity was also associated with relative testes mass. These results suggest that post-copulatory mechanisms of sexual selection are probably driving the evolution of more complex-shaped bacula tips in Musteloidea and are likely to be especially involved in increasing intromission duration during copulation

    Rapid reviews may produce different results to systematic reviews: a meta-epidemiological study

    Get PDF
    OBJECTIVE: To simulate possible changes in systematic review results if rapid review methods were used. STUDY DESIGN AND SETTING: We re-calculated meta-analyses for binary primary outcomes in Cochrane systematic reviews, simulating rapid review methods. We simulated: searching only PubMed; excluding older articles (5, 7, 10, 15, and 20 years prior to the search date); excluding smaller trials (20% could be tolerated. This could be the case in scoping reviews, resource limitation, or where syntheses are needed urgently. Other situations, such as clinical guidelines and regulatory decisions, favour more comprehensive systematic review methods

    Minimum convex hull mass estimations of complete mounted skeletons

    Get PDF
    Body mass is a critical parameter used to constrain biomechanical and physiological traits of organisms. Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates. However, they are often accused of excessive subjective input when estimating the thickness of missing soft tissue. Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is thus more objective and far quicker. We test this method on 14 relatively large-bodied mammalian skeletons and demonstrate that it consistently underestimates body mass by 21 per cent with minimal scatter around the regression line. We therefore suggest that it is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs: Giraffatitan brancai (previously Brachiosaurus) as 23200 kg

    Long-term patterns of body mass and stature evolution within the hominin lineage.

    Get PDF
    Body size is a central determinant of a species' biology and adaptive strategy, but the number of reliable estimates of hominin body mass and stature have been insufficient to determine long-term patterns and subtle interactions in these size components within our lineage. Here, we analyse 254 body mass and 204 stature estimates from a total of 311 hominin specimens dating from 4.4 Ma to the Holocene using multi-level chronological and taxonomic analytical categories. The results demonstrate complex temporal patterns of body size variation with phases of relative stasis intermitted by periods of rapid increases. The observed trajectories could result from punctuated increases at speciation events, but also differential proliferation of large-bodied taxa or the extinction of small-bodied populations. Combined taxonomic and temporal analyses show that in relation to australopithecines, early Homo is characterized by significantly larger average body mass and stature but retains considerable diversity, including small body sizes. Within later Homo, stature and body mass evolution follow different trajectories: average modern stature is maintained from ca 1.6 Ma, while consistently higher body masses are not established until the Middle Pleistocene at ca 0.5-0.4 Ma, likely caused by directional selection related to colonizing higher latitudes. Selection against small-bodied individuals (less than 40 kg; less than 140 cm) after 1.4 Ma is associated with a decrease in relative size variability in later Homo species compared with earlier Homo and australopithecines. The isolated small-bodied individuals of Homo naledi (ca 0.3 Ma) and Homo floresiensis (ca 100-60 ka) constitute important exceptions to these general patterns, adding further layers of complexity to the evolution of body size within the genus Homo. At the end of the Late Pleistocene and Holocene, body size in Homo sapiens declines on average, but also extends to lower limits not seen in comparable frequency since early Homo

    SARS-CoV-2 and the role of fomite transmission: a systematic review [version 3; peer review: 2 approved]

    Get PDF
    Background: SARS-CoV-2 RNA has been detected in fomites which suggests the virus could be transmitted via inanimate objects. However, there is uncertainty about the mechanistic pathway for such transmissions. Our objective was to identify, appraise and summarise the evidence from primary studies and systematic reviews assessing the role of fomites in transmission.  Methods: This review is part of an Open Evidence Review on Transmission Dynamics of SARS-CoV-2. We conduct ongoing searches using WHO Covid-19 Database, LitCovid, medRxiv, and Google Scholar; assess study quality based on five criteria and report important findings on an ongoing basis. Results: We found 64 studies: 63 primary studies and one systematic review (n=35). The settings for primary studies were predominantly in hospitals (69.8%) including general wards, ICU and SARS-CoV-2 isolation wards. There were variations in the study designs including timing of sample collection, hygiene procedures, ventilation settings and cycle threshold. The overall quality of reporting was low to moderate. The frequency of positive SARS-CoV-2 tests across 51 studies (using RT-PCR) ranged from 0.5% to 75%. Cycle threshold values ranged from 20.8 to 44.1. Viral concentrations were reported in 17 studies; however, discrepancies in the methods for estimation prevented comparison. Eleven studies (17.5%) attempted viral culture, but none found a cytopathic effect. Results of the systematic review showed that healthcare settings were most frequently tested (25/35, 71.4%), but laboratories reported the highest frequency of contaminated surfaces (20.5%, 17/83).  Conclusions: The majority of studies report identification of SARS-CoV-2 RNA on inanimate surfaces; however, there is a lack of evidence demonstrating the recovery of viable virus. Lack of positive viral cultures suggests that the risk of transmission of SARS-CoV-2 through fomites is low. Heterogeneity in study designs and methodology prevents comparisons of findings across studies. Standardized guidelines for conducting and reporting research on fomite transmission is warranted

    What’s in a name? Wildlife traders evade authorities using code words

    Get PDF
    Where rare species are concerned, including those with restricted range, their use for traditional medicine can have disastrous impacts on local populations already under pressure. Difficulty in monitoring such illegal activity has been illustrated by enforcement raids across India since June 2017, with authorities seizing supposedly rare Himalayan plant roots referred to as hatha jodi

    More than one way of being a moa: differences in leg bone robustness map divergent evolutionary trajectories in Dinornithidae and Emeidae (Dinornithiformes).

    Get PDF
    The extinct moa of New Zealand included three families (Megalapterygidae; Dinornithidae; Emeidae) of flightless palaeognath bird, ranging in mass from 200 kg. They are perceived to have evolved extremely robust leg bones, yet current estimates of body mass have very wide confidence intervals. Without reliable estimators of mass, the extent to which dinornithid and emeid hindlimbs were more robust than modern species remains unclear. Using the convex hull volumetric-based method on CT-scanned skeletons, we estimate the mass of a female Dinornis robustus (Dinornithidae) at 196 kg (range 155-245 kg) and of a female Pachyornis australis (Emeidae) as 50 kg (range 33-68 kg). Finite element analysis of CT-scanned femora and tibiotarsi of two moa and six species of modern palaeognath showed that P. australis experienced the lowest values for stress under all loading conditions, confirming it to be highly robust. In contrast, stress values in the femur of D. robustus were similar to those of modern flightless birds, whereas the tibiotarsus experienced the highest level of stress of any palaeognath. We consider that these two families of Dinornithiformes diverged in their biomechanical responses to selection for robustness and mobility, and exaggerated hindlimb strength was not the only successful evolutionary pathway

    Muscle moment arm analyses applied to vertebrate paleontology: a case study using Stegosaurus stenops Marsh, 1887

    Get PDF
    The moment arm of a muscle defines its leverage around a given joint. In a clinical setting, the quantification of muscle moment arms is an important means of establishing the ‘healthy’ functioning of a muscle and in identifying and treating musculoskeletal abnormalities. Elsewhere in modern animal taxa, moment arm studies aim to illuminate adaptions of the musculoskeletal system towards particular locomotor or feeding behaviors. In the absence of kinematic data, paleontologists have likewise relied upon estimated muscle moment arms as a means of reconstructing musculoskeletal function and biomechanical performance in fossil species. With the application of ‘virtual paleontological’ techniques, it is possible to generate increasingly detailed musculoskeletal models of extinct taxa. However, the steps taken to derive such models of complex systems are seldom reported in detail. Here we present a case study for calculating three-dimensional muscle moment arms using Stegosaurus stenops Marsh, 1887 to highlight both the potential and the limitations of this approach in vertebrate paleontology. We find the technique to be mostly insensitive to choices in muscle modeling parameters (particularly relative to other sources of uncertainty in paleontological studies), although exceptions do exist. Of more concern is the current lack of consensus on what functional signals, if any, are contained within moment arm data derived from extant species. Until a correlation between muscle moment arm and function can be broadly identified across a range of modern taxa, the interpretation of moment arms calculated for extinct taxa should be approached with caution
    • …
    corecore