806 research outputs found

    Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance

    Get PDF
    This is the final version. Available from Springer Verlag via the DOI in this record.Polyphenols are characterised structurally by two or more hydroxyl groups attached to one or more benzene rings, and provide the taste and colour characteristics of fruits and vegetables. They are radical scavengers and metal chelators, but due to their low concentration in biological fluids in vivo their antioxidant properties seem to be related to enhanced endogenous antioxidant capacity induced via signalling through the Nrf2 pathway. Polyphenols also seem to possess anti-inflammatory properties and have been shown to enhance vascular function via nitric oxide-mediated mechanisms. As a consequence, there is a rationale for supplementation with fruit-derived polyphenols both to enhance exercise performance, since excess reactive oxygen species generation has been implicated in fatigue development, and to enhance recovery from muscle damage induced by intensive exercise due to the involvement of inflammation and oxidative damage within muscle. Current evidence would suggest that acute supplementation with ~ 300 mg polyphenols 1–2 h prior to exercise may enhance exercise capacity and/or performance during endurance and repeated sprint exercise via antioxidant and vascular mechanisms. However, only a small number of studies have been performed to date, some with methodological limitations, and more research is needed to confirm these findings. A larger body of evidence suggests that supplementation with > 1000 mg polyphenols per day for 3 or more days prior to and following exercise will enhance recovery following muscle damage via antioxidant and anti-inflammatory mechanisms. The many remaining unanswered questions within the field of polyphenol research and exercise performance and recovery are highlighted within this review article.Gatorade Sports Science Institute (GSSI

    Experimental evidence of the tonic vibration reflex during whole-body vibration of the loaded and unloaded leg

    Get PDF
    Increased muscle activation during whole-body vibration (WBV) is mainly ascribed to a complex spinal and supraspinal neurophysiological mechanism termed the tonic vibration reflex (TVR). However, TVR has not been experimentally demonstrated during low-frequency WBV, therefore this investigation aimed to determine the expression of TVR during WBV. Whilst seated, eight healthy males were exposed to either vertical WBV applied to the leg via the plantar-surface of the foot, or Achilles tendon vibration (ATV) at 25 Hz and 50 Hz for 70s. Ankle plantar-flexion force, tri-axial accelerations at the shank and vibration source, and surface EMG activity of m. soleus (SOL) and m. tibialis anterior (TA) were recorded from the unloaded and passively loaded leg to simulate body mass supported during standing. Plantar flexion force was similarly augmented by WBV and ATV and increased over time in a load- and frequency dependent fashion. SOL and TA EMG amplitudes increased over time in all conditions independently of vibration mode. 50 Hz WBV and ATV resulted in greater muscle activation than 25 Hz in SOL when the shank was loaded and in TA when the shank was unloaded despite the greater transmission of vertical acceleration from source to shank with 25 Hz and WBV, especially during loading. Low-amplitude WBV of the unloaded and passively loaded leg produced slow tonic muscle contraction and plantar-flexion force increase of similar magnitudes to those induced by Achilles tendon vibration at the same frequencies. This study provides the first experimental evidence supporting the TVR as a plausible mechanism underlying the neuromuscular response to whole-body vibration

    Montmorency cherry supplementation improves 15-km cycling time-trial performance

    Get PDF
    This is the final version. Available on open access from Springer Verlag via the DOI in this recordAim: Montmorency cherries are rich in polyphenols that possess antioxidant, anti-inflammatory and vasoactive properties. We investigated whether 7 d Montmorency cherry powder supplementation improved cycling time-trial (TT) performance. Methods: 8 trained male cyclists (V̇O2peak: 62.3 ± 10.1 ml.kg-1.min-1) completed 10-min steady state (SS) cycling at ~65% V̇O2peak followed by a 15-km TT on two occasions. Participants consumed 6 pills per day (Montmorency cherry powder, MC; anthocyanin 257 mg·d−1 or dextrose powder, PL) for a 7 d period, 3 pills in the morning and evening. Capillary blood [lactate] was measured at baseline, post SS and post TT. Pulmonary gas exchange and tissue oxygenation index (TOI) of m.vastus lateralis via near-infrared spectroscopy, were measured throughout. Results: TT completion time was 4.6 ± 2.9% faster following MC (1506 ± 86 s) supplementation compared to PL (1580 ± 102 s; P=0.004). Blood [lactate] was significantly higher in MC after SS (PL: 4.4 ± 2.1 vs. MC: 6.7 ± 3.3 mM, P=0.017) alongside an elevated baseline TOI (PL: 68.7 ± 2.1 vs. MC: 70.4 ± 2.3%, P=0.018). Discussion: Montmorency cherry supplementation improved 15-km cycling TT performance. This improvement in exercise performance was accompanied by enhanced muscle oxygenation suggesting that the vasoactive properties of the Montmorency cherry polyphenols may underpin the ergogenic effects

    Effect of Immobilisation on Neuromuscular Function In Vivo in Humans: A Systematic Review

    Get PDF
    This is the final version. Available on open access from Springer Verlag via the DOI in this recordData Availability Statement: Data and materials are available on request from the corresponding author.Background: Muscle strength loss following immobilisation has been predominantly attributed to rapid muscle atrophy. However, this cannot fully explain the magnitude of muscle strength loss, so changes in neuromuscular function (NMF) may be involved. Objectives: We systematically reviewed literature that quantified changes in muscle strength, size and NMF following periods of limb immobilisation in vivo in humans. Methods: Studies were identified following systematic searches, assessed for inclusion, data extracted and quality appraised by two reviewers. Data were tabulated and reported narratively. Results: Forty eligible studies were included, 22 immobilised lower and 18 immobilised upper limbs. Limb immobilisation ranged from 12 h to 56 days. Isometric muscle strength and muscle size declined following immobilisation; however, change magnitude was greater for strength than size. Evoked resting twitch force decreased for lower but increased for upper limbs. Rate of force development either remained unchanged or slowed for lower and typically slowed for upper limbs. Twitch relaxation rate slowed for both lower and upper limbs. Central motor drive typically decreased for both locations, while electromyography amplitude during maximum voluntary contractions decreased for the lower and presented mixed findings for the upper limbs. Trends imply faster rates of NMF loss relative to size earlier in immobilisation periods for all outcomes. Conclusions: Limb immobilisation results in non-uniform loss of isometric muscle strength, size and NMF over time. Different outcomes between upper and lower limbs could be attributed to higher degrees of central neural control of upper limb musculature. Future research should focus on muscle function losses and mechanisms following acute immobilisation. Registration: PROSPERO reference: CRD42016033692

    Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI

    Get PDF
    Large artefacts compromise EEG data quality during simultaneous fMRI. These artefact voltages pose heavy demands on the bandwidth and dynamic range of EEG amplifiers and mean that even small fractional variations in the artefact voltages give rise to significant residual artefacts after average artefact subtraction. Any intrinsic reduction in the magnitude of the artefacts would be highly advantageous, allowing data with a higher bandwidth to be acquired without amplifier saturation, as well as reducing the residual artefacts that can easily swamp signals from brain activity measured using current methods. Since these problems currently limit the utility of simultaneous EEG–fMRI, new approaches for reducing the magnitude and variability of the artefacts are required. One such approach is the use of an EEG cap that incorporates electrodes embedded in a reference layer that has similar conductivity to tissue and is electrically isolated from the scalp. With this arrangement, the artefact voltages produced on the reference layer leads by time-varying field gradients, cardiac pulsation and subject movement are similar to those induced in the scalp leads, but neuronal signals are not detected in the reference layer. Taking the difference of the voltages in the reference and scalp channels will therefore reduce the artefacts, without affecting sensitivity to neuronal signals. Here, we test this approach by using a simple experimental realisation of the reference layer to investigate the artefacts induced on the leads attached to the reference layer and scalp and to evaluate the degree of artefact attenuation that can be achieved via reference layer artefact subtraction (RLAS). Through a series of experiments on phantoms and human subjects, we show that RLAS significantly reduces the gradient (GA), pulse (PA) and motion (MA) artefacts, while allowing accurate recording of neuronal signals. The results indicate that RLAS generally outperforms AAS when motion is present in the removal of the GA and PA, while the combination of AAS and RLAS always produces higher artefact attenuation than AAS. Additionally, we demonstrate that RLAS greatly attenuates the unpredictable and highly variable MAs that are very hard to remove using post-processing methods

    Exploring the origins of EEG motion artefacts during simultaneous fMRI acquisition: implications for motion artefact correction

    Get PDF
    Motion artefacts (MAs) are induced within EEG data collected simultaneously with fMRI when the subject’s head rotates relative to the magnetic field. The effects of these artefacts have generally been ameliorated by removing periods of data during which large artefact voltages appear in the EEG traces. However, even when combined with other standard post-processing methods, this strategy does not remove smaller MAs which can dominate the neuronal signals of interest. A number of methods are therefore being developed to characterise the MA by measuring reference signals and then using these in artefact correction. These methods generally assume that the head and EEG cap, plus any attached sensors, form a rigid body which can be characterised by a standard set of six motion parameters. Here we investigate the motion of the head/EEG cap system to provide a better understanding of MAs. We focus on the reference layer artefact subtraction (RLAS) approach, as this allows measurement of a separate reference signal for each electrode that is being used to measure brain activity. Through a series of experiments on phantoms and subjects, we find that movement of the EEG cap relative to the phantom and skin on the forehead is relatively small and that this non-rigid body movement does not appear to cause considerable discrepancy in artefacts between the scalp and reference signals. However, differences in the amplitude of these signals is observed which may be due to differences in geometry of the system from which the reference signals are measured compared with the brain signals. In addition, we find that there is non-rigid body movement of the skull and skin which produces an additional MA component for a head shake, which is not present for a head nod. This results in a large discrepancy in the amplitude and temporal profile of the MA measured on the scalp and reference layer, reducing the efficacy of MA correction based on the reference signals. Together our data suggest that the efficacy of the correction of MA using any reference-based system is likely to differ for different types of head movement with head shake being the hardest to correct. This provides new information to inform the development of hardware and post-processing methods for removing MAs from EEG data acquired simultaneously with fMRI data

    Evaluating the effect of a home-delivered meal service on the physical and psychological wellbeing of a UK population of older adults—A pilot and feasibility study

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordWe evaluated the effectiveness of a 3-week, daily meal provision service by a non-profit provider on the physical and psychological wellbeing of an older adult population. We further examined the feasibility of carrying out such measures in participant’s homes. 19 older adult participants (8M, 11F; 78.3 ± 8.7 years) received 3 meals per day for 21 days and supplemented these meals ad libitum. Risk of malnutrition (Mini Nutritional Assessment; MNA) body composition, blood pressure, handgrip strength, balance, mobility, loneliness, social capital, satisfaction with life and mood were evaluated in participant’s homes before and after the intervention. Following the intervention, MNA score increased significantly and participants rated themselves as significantly less depressed. We describe a methodology that was largely feasible and outline ways in which it could be improved. We have demonstrated that even short-term, home meal deliveries improve MNA scores and can positively alter some measures of mood.ESR

    Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes

    Get PDF
    This is the final version. Available on open access from SAGE Publications via the DOI in this recordThe aim of this study was to characterise acceleration transmission and neuromuscular responses to rotational (RV) and vertical (VV) vibration of different frequencies and amplitudes. Methods - 12 healthy males completed 2 experimental trials (RV vs. VV) during which vibration was delivered during either squatting (30°; RV vs. VV) or standing (RV only) with 20, 25, 30 Hz, at 1.5 and 3.0 mm peak-to-peak amplitude. Vibration-induced accelerations were assessed with triaxial accelerometers mounted on the platform and bony landmarks at ankle, knee, and lumbar spine. Results At all frequency/amplitude combinations, accelerations at the ankle were greater during RV (all p < 0.03) with the greatest difference observed at 30 Hz 1.5 mm. Transmission of RV was also influenced by body posture (standing vs. squatting, p < 0.03). Irrespective of vibration type vibration transmission to all skeletal sites was generally greater at higher amplitudes but not at higher frequencies, especially above the ankle joint. Acceleration at the lumbar spine increased with greater vibration amplitude but not frequency and was highest with RV during standing. Conclusions/Implications - The transmission of vibration during WBV is dependent on intensity and direction of vibration as well as body posture. For targeted mechanical loading at the lumbar spine, RV of higher amplitude and lower frequency vibration while standing is recommended. These results will assist with the prescription of WBV to achieve desired levels of mechanical loading at specific sites in the human body.London South Bank UniversityAge U

    A critical consideration of the role of mental toughness and pain in the acute pain experiences of athletes

    Get PDF
    This is the author accepted manuscript. The final version is available from Routledge via the DOI in this recordThis narrative review investigates the relationship between mental toughness (and mental toughness resources) and pain in athletes. Theorists have postulated that mentally tough athletes possess the ability to push through painful periods of training and competition to achieve high levels of performance. Athletes and coaches attribute the capacity to tolerate and even thrive while experiencing pain to be a potential differentiator to performance outcomes, however, few experimental studies examine the predictive value of mental toughness in the context of pain. There are researchers who have examined the resources of mental toughness that could shed light on how mental toughness influences pain experiences in athletes. Therefore, this review examined the relationship between mental toughness as a global construct and the separate mental toughness resources and pain experiences. We identified resources of mental toughness based on previous research and then considered which of these resources had been studied in the context of pain. Optimism, resilience, self-efficacy, and goal attention were identified as key components of mental toughness that were related to pain experiences. The findings of this review indicate a potential area for performance enhancement in the development of applied coaching practices

    Statistical analysis of an RNA titration series evaluates microarray precision and sensitivity on a whole-array basis

    Get PDF
    BACKGROUND: Concerns are often raised about the accuracy of microarray technologies and the degree of cross-platform agreement, but there are yet no methods which can unambiguously evaluate precision and sensitivity for these technologies on a whole-array basis. RESULTS: A methodology is described for evaluating the precision and sensitivity of whole-genome gene expression technologies such as microarrays. The method consists of an easy-to-construct titration series of RNA samples and an associated statistical analysis using non-linear regression. The method evaluates the precision and responsiveness of each microarray platform on a whole-array basis, i.e., using all the probes, without the need to match probes across platforms. An experiment is conducted to assess and compare four widely used microarray platforms. All four platforms are shown to have satisfactory precision but the commercial platforms are superior for resolving differential expression for genes at lower expression levels. The effective precision of the two-color platforms is improved by allowing for probe-specific dye-effects in the statistical model. The methodology is used to compare three data extraction algorithms for the Affymetrix platforms, demonstrating poor performance for the commonly used proprietary algorithm relative to the other algorithms. For probes which can be matched across platforms, the cross-platform variability is decomposed into within-platform and between-platform components, showing that platform disagreement is almost entirely systematic rather than due to measurement variability. CONCLUSION: The results demonstrate good precision and sensitivity for all the platforms, but highlight the need for improved probe annotation. They quantify the extent to which cross-platform measures can be expected to be less accurate than within-platform comparisons for predicting disease progression or outcome
    • …
    corecore