56 research outputs found

    Enrichment of homologs in insignificant BLAST hits by co-complex network alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homology is a crucial concept in comparative genomics. The algorithm probably most widely used for homology detection in comparative genomics, is BLAST. Usually a stringent score cutoff is applied to distinguish putative homologs from possible false positive hits. As a consequence, some BLAST hits are discarded that are in fact homologous.</p> <p>Results</p> <p>Analogous to the use of the genomics context in genome alignments, we test whether conserved functional context can be used to select candidate homologs from insignificant BLAST hits. We make a co-complex network alignment between complex subunits in yeast and human and find that proteins with an insignificant BLAST hit that are part of homologous complexes, are likely to be homologous themselves. Further analysis of the distant homologs we recovered using the co-complex network alignment, shows that a large majority of these distant homologs are in fact ancient paralogs.</p> <p>Conclusions</p> <p>Our results show that, even though evolution takes place at the sequence and genome level, co-complex networks can be used as circumstantial evidence to improve confidence in the homology of distantly related sequences.</p

    Preparation and topology of the Mediator middle module

    Get PDF
    Mediator is the central coactivor complex required for regulated transcription by RNA polymerase (Pol) II. Mediator consists of 25 subunits arranged in the head, middle, tail and kinase modules. Structural and functional studies of Mediator are limited by the availability of protocols for the preparation of recombinant modules. Here, we describe protocols for obtaining pure endogenous and recombinant complete Mediator middle module from Saccharomyces cerevisiae that consists of seven subunits: Med1, 4, 7, 9, 10, 21 and 31. Native mass spectrometry reveals that all subunits are present in equimolar stoichiometry. Ion-mobility mass spectrometry, limited proteolysis, light scattering and small-angle X-ray scattering all indicate a high degree of intrinsic flexibility and an elongated shape of the middle module. Protein–protein interaction assays combined with previously published data suggest that the Med7 and Med4 subunits serve as a binding platform to form the three heterodimeric subcomplexes, Med7N/21, Med7C/31 and Med4/9. The subunits, Med1 and Med10, which bridge to the Mediator tail module, bind to both Med7 and Med4

    Malleable Machines in Transcription Regulation: The Mediator Complex

    Get PDF
    The Mediator complex provides an interface between gene-specific regulatory proteins and the general transcription machinery including RNA polymerase II (RNAP II). The complex has a modular architecture (Head, Middle, and Tail) and cryoelectron microscopy analysis suggested that it undergoes dramatic conformational changes upon interactions with activators and RNAP II. These rearrangements have been proposed to play a role in the assembly of the preinitiation complex and also to contribute to the regulatory mechanism of Mediator. In analogy to many regulatory and transcriptional proteins, we reasoned that Mediator might also utilize intrinsically disordered regions (IDRs) to facilitate structural transitions and transmit transcriptional signals. Indeed, a high prevalence of IDRs was found in various subunits of Mediator from both Saccharomyces cerevisiae and Homo sapiens, especially in the Tail and the Middle modules. The level of disorder increases from yeast to man, although in both organisms it significantly exceeds that of multiprotein complexes of a similar size. IDRs can contribute to Mediator's function in three different ways: they can individually serve as target sites for multiple partners having distinctive structures; they can act as malleable linkers connecting globular domains that impart modular functionality on the complex; and they can also facilitate assembly and disassembly of complexes in response to regulatory signals. Short segments of IDRs, termed molecular recognition features (MoRFs) distinguished by a high protein–protein interaction propensity, were identified in 16 and 19 subunits of the yeast and human Mediator, respectively. In Saccharomyces cerevisiae, the functional roles of 11 MoRFs have been experimentally verified, and those in the Med8/Med18/Med20 and Med7/Med21 complexes were structurally confirmed. Although the Saccharomyces cerevisiae and Homo sapiens Mediator sequences are only weakly conserved, the arrangements of the disordered regions and their embedded interaction sites are quite similar in the two organisms. All of these data suggest an integral role for intrinsic disorder in Mediator's function

    PS Integrins and Laminins: Key Regulators of Cell Migration during Drosophila Embryogenesis

    Get PDF
    During embryonic development, there are numerous cases where organ or tissue formation depends upon the migration of primordial cells. In the Drosophila embryo, the visceral mesoderm (vm) acts as a substrate for the migration of several cell populations of epithelial origin, including the endoderm, the trachea and the salivary glands. These migratory processes require both integrins and laminins. The current model is that αPS1βPS (PS1) and/or αPS3βPS (PS3) integrins are required in migrating cells, whereas αPS2βPS (PS2) integrin is required in the vm, where it performs an as yet unidentified function. Here, we show that PS1 integrins are also required for the migration over the vm of cells of mesodermal origin, the caudal visceral mesoderm (CVM). These results support a model in which PS1 might have evolved to acquire the migratory function of integrins, irrespective of the origin of the tissue. This integrin function is highly specific and its specificity resides mainly in the extracellular domain. In addition, we have identified the Laminin α1,2 trimer, as the key extracellular matrix (ECM) component regulating CVM migration. Furthermore, we show that, as it is the case in vertebrates, integrins, and specifically PS2, contributes to CVM movement by participating in the correct assembly of the ECM that serves as tracks for migration

    The MDT-15 Subunit of Mediator Interacts with Dietary Restriction to Modulate Longevity and Fluoranthene Toxicity in Caenorhabditis elegans

    Get PDF
    Dietary restriction (DR), the limitation of calorie intake while maintaining proper nutrition, has been found to extend life span and delay the onset of age-associated disease in a wide range of species. Previous studies have suggested that DR can reduce the lethality of environmental toxins. To further examine the role of DR in toxin response, we measured life spans of the nematode Caenorhabditis elegans treated with the mutagenic polyaromatic hydrocarbon, fluoranthene (FLA). FLA is a direct byproduct of combustion, and is one of U.S. Environmental Protection Agency's sixteen priority environmental toxins. Treatment with 5 µg/ml FLA shortened the life spans of ad libitum fed nematodes, and DR resulted in increased sensitivity to FLA. To determine the role of detoxifying enzymes in the toxicity of FLA, we tested nematodes with mutations in the gene encoding the MDT-15 subunit of mediator, a transcriptional coactivator that regulates genes involved in fatty acid metabolism and detoxification. Mutation of mdt-15 increased the life span of FLA treated animals compared to wild-type animals with no difference observed between DR and ad libitum fed mdt-15 animals. We also examined mutants with altered insulin-IGF-1-like signaling (IIS), which is known to modulate life span and stress resistance in C. elegans independently of DR. Mutation of the genes coding for the insulin-like receptor DAF-2 or the FOXO-family transcription factor DAF16 did not alter the animals' susceptibility to FLA compared to wild type. Taken together, our results suggest that certain compounds have increased toxicity when combined with a DR regimen through increased metabolic activation. This increased metabolic activation appears to be mediated through the MDT-15 transcription factor and is independent of the IIS pathway

    Cryptococcus neoformans Mediator Protein Ssn8 Negatively Regulates Diverse Physiological Processes and Is Required for Virulence

    Get PDF
    Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed that Ssn8 functions as a negative regulator in both heterothallic a-α mating and same-sex mating processes. In addition, Ssn8 is involved in the suppression of other physiological processes including invasive growth, and production of capsule and melanin. Interestingly, Ssn8 is also required for the maintenance of cell wall integrity and virulence. Our gene expression studies confirmed that deletion of SSN8 results in de-repression of genes involved in sexual development and melanization. Epistatic and yeast two hybrid studies suggest that C. neoformans Ssn8 plays critical roles downstream of the Cpk1 MAPK cascade and Ste12 and possibly resides at one of the major branches downstream of the Cwc complex in the light-mediated sexual development pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is required for virulence in C. neoformans

    Homeodomain proteins: an update

    Get PDF

    Identification of Genes Involved In Taura Syndrome Virus Resistance In \u3ci\u3eLitopenaeus vannamei\u3c/i\u3e

    No full text
    The goal of the present research was to identify the genes that are differentially expressed between two lineages of Pacific white shrimp Litopenaeus vannamei displaying different susceptibilities to Taura syndrome virus (TSV) and to understand the molecular pathways involved in resistance to the disease. An oligonucleotide microarray was constructed and used to identify several genes that were differentially expressed in the two L. vannamei lineages following infection with TSV. Individual L. vannamei from either resistant or susceptible lineages were exposed via injection to TSV. Individuals were removed at 6 and 24 h postinfection, and gene expression was assessed with the in-house microarray. The microarray data resulted in the selection of a set of 397 genes that were altered by TSV exposure between the different lineages. Significantly differentially expressed genes were subjected to hierarchical clustering and revealed a lineage-dependent clustering at 24 h postinoculation, but not at 6 h postinoculation. Discriminant analysis resulted in the identification of a set of 11 genes that were able to correctly classify Pacific white shrimp as resistant or susceptible based on gene expression data

    Photo-Induced Toxicity of Deepwater Horizon Slick Oil to Blue Crab (\u3ci\u3eCallinectes sapidus\u3c/i\u3e) Larvae

    No full text
    The 2010 Deepwater Horizon oil spill resulted in the accidental release of approximately 700 million L of crude oil into the Gulf of Mexico. Photo-induced toxicity after co-exposure to ultraviolet (UV) radiation is 1 mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Blue crab are an important commercial and ecological resource in the Gulf of Mexico, and their largely transparent larvae may make them sensitive to PAH photo-induced toxicity. The goal of the present study was to examine the sensitivity of early lifestage blue crab (Callinectes sapidus) zoea to slick oil collected during the Deepwater Horizon spill. Blue crab zoea were exposed to 1 of several dilutions of water accommodated fractions from 1 of 2 sources of oil and gradations of natural sunlight in a factorial design. Two 7-h solar exposures were carried out with a recovery period (dark) in between. Survival was found to be UV- and PAH-dependent. Toxicity was observed within the range of surface PAH concentrations reported in the Gulf of Mexico during the Deepwater Horizon spill. These findings indicate that early lifestage blue crab are sensitive to photo-induced toxicity from Deepwater Horizon slick oil
    corecore