1,589 research outputs found

    Noncommutative Common Cause Principles in Algebraic Quantum Field Theory

    Full text link
    States in algebraic quantum field theory "typically" establish correlation between spacelike separated events. Reichenbach's Common Cause Principle, generalized to the quantum field theoretical setting, offers an apt tool to causally account for these superluminal correlations. In the paper we motivate first why commutativity between the common cause and the correlating events should be abandoned in the definition of the common cause. Then we show that the Noncommutative Weak Common Cause Principle holds in algebraic quantum field theory with locally finite degrees of freedom. Namely, for any pair of projections A, B supported in spacelike separated regions V_A and V_B, respectively, there is a local projection C not necessarily commuting with A and B such that C is supported within the union of the backward light cones of V_A and V_B and the set {C, non-C} screens off the correlation between A and B

    Review of the Great Barrier Reef Marine Park Act 1975: Review Panel report

    Get PDF

    Evolution of particle-scale dynamics in an aging clay suspension

    Full text link
    Multispeckle x-ray photon correlation spectroscopy was employed to characterize the slow dynamics of a colloidal suspension formed by highly-charged, nanometer-sized disks. At scattering wave vectors qq corresponding to interparticle length scales, the dynamic structure factor follows a form f(q,t)exp[(t/τ)βf(q,t) \sim \exp[-(t/\tau)^{\beta}], where β\beta \approx 1.5. The characteristic relaxation time τ\tau increases with the sample age tat_a approximately as τta1.8\tau \sim t_a^{1.8} and decreases with qq approximately as τq1\tau \sim q^{-1}. Such a compressed exponential decay with relaxation time that varies inversely with qq is consistent with recent models that describe the dynamics in disordered elastic media in terms of strain from random, local structural rearrangements. The amplitude of the measured decay in f(q,t)f(q,t) varies with qq in a manner that implies caged particle motion at short times. The decrease in the range of this motion and an increase in suspension conductivity with increasing tat_a indicate a growth in the interparticle repulsion as the mechanism for internal stress development implied by the models.Comment: 4 pages, includes 4 postscript figures; accepted for publication in Phys Rev Let

    Power extraction by a water turbine in inviscid free surface flow with vertical shear

    Get PDF
    Hydro-kinetic, tidal stream, and ocean current energy turbines operate in flows subject to vertical shear, which has an influence on the turbines, especially ones located near the bed. The gravity applied on a fluid is proportional to its density, thus the static pressure induced by gravity is enhanced by the higher density of water than air. Turbines are expected to be placed in fast moving, shallow flows. Hence the Froude number may be relatively high and changes to the free surface are likely, leading to additional flow confinement. In order to investigate the combined effect of vertical shear and gravity on idealized turbines, an extension of linear momentum actuator disc theory (LMADT) is used to estimate the thrust and power extracted by an idealized turbine for two types of free surface inviscid flow. It is assumed that there is fast pressure recovery and that the core flow contains self-similar velocity profiles. Results from a parameter study in which the velocity profiles and turbine settings are varied show that idealized turbines operate at higher efficiency under the effect of gravity, but operate at either higher or lower efficiency under shear flow. The proposed model can also be used to investigate energy extracted by turbines in a periodically spaced array, enabling better evaluation of array efficiency

    The motivating operation and negatively reinforced problem behavior. A systematic review.

    Get PDF
    The concept of motivational operations exerts an increasing influence on the understanding and assessment of problem behavior in people with intellectual and developmental disability. In this systematic review of 59 methodologically robust studies of the influence of motivational operations in negative reinforcement paradigms in this population, we identify themes related to situational and biological variables that have implications for assessment, intervention, and further research. There is now good evidence that motivational operations of differing origins influence negatively reinforced problem behavior, and that these might be subject to manipulation to facilitate favorable outcomes. There is also good evidence that some biological variables warrant consideration in assessment procedures as they predispose the person's behavior to be influenced by specific motivational operations. The implications for assessment and intervention are made explicit with reference to variables that are open to manipulation or that require further research and conceptualization within causal models

    Probabilistic Weyl laws for quantized tori

    Get PDF
    For the Toeplitz quantization of complex-valued functions on a 2n2n-dimensional torus we prove that the expected number of eigenvalues of small random perturbations of a quantized observable satisfies a natural Weyl law. In numerical experiments the same Weyl law also holds for ``false'' eigenvalues created by pseudospectral effects.Comment: 33 pages, 3 figures, v2 corrected listed titl

    A finite volume shock-capturing solver of the fully coupled shallow water-sediment equations

    Get PDF
    This paper describes a numerical solver of well-balanced, 2D depth-averaged shallow water-sediment equations. The equations permit variable variable horizontal fluid density and are designed to model watersediment flow over a mobile bed. A Godunov-type, HLLC finite volume scheme is used to solve the fully coupled system of hyperbolic conservation laws which describe flow hydrodynamics, suspended sediment transport, bedload transport and bed morphological change. Dependent variables are specially selected to handle the presence of the variable density property in the mathematical formulation. The model is verified against analytical and semi-analytical solutions for bedload transport and suspended sediment transport, respectively. The well-balanced property of the equations is verified for a variable-density dam break flow over discontinuous bathymetry. Simulations of an idealised dam-break flow over an erodible bed are in excellent agreement with previously published results ([1]), validating the ability of the model to capture the complex interaction between rapidly varying flow and an erodible bed and validating the eigenstructure of the system of variable-density governing equations. Flow hydrodynamics and final bed topography of a laboratory-based 2D partial dam breach over a mobile bed are satisfactorily reproduced by the numerical model. Comparison of the final bed topographies, computed for two distinct sediment transport methods, highlights the sensitivity of shallow water-sediment models to the choice of closure relationships

    Short-Term Response of Shrubs, Graminoids, and Forbs to Mechanical Treatment in a Sagebrush Ecosystem in Colorado

    Get PDF
    Declines in Gunnison sage grouse populations are thought to be related to habitat loss, fragmentation, and human induced habitat changes. In an attempt to improve the quality of early brood rearing habitat the Bureau of Land Management, Gunnison Field Office in Gunnison Colorado implemented a series of mechanical treatments designed to reduce sagebrush canopy cover and increase cover of graminoids and forbs. Brush mowing and Dixie harrow were utilized in 2005 to treat 30 percent of six 14 ac sites. In 2006 and 2007 shrub canopy cover, graminoid cover, forb cover, heights, and species richness were assessed to determine the vegetative response to each treatment. Sagebrush canopy cover was reduced to approximately 15 percent by both treatments. Mowing appeared to have no effect on forb or non-sagebrush shrub canopy cover, however, graminoid cover increased slightly post-treatment. Sites treated with the Dixie harrow had increased non-sagebrush shrub canopy cover, graminoid cover, and forb cover in post treatment years as compared to pretreatment. Heights for graminoids and forbs did not differ pre and post treatment ( p \u3e 0.05) nor did species richness (p \u3e 0.05) for either treatment
    corecore