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Abstract

Hydro-kinetic, tidal stream, and ocean current energy turbines operate in flows subject to vertical shear,

which has an influence on the turbines, especially ones located near the bed. The gravity applied on a fluid

is proportional to its density, thus the static pressure induced by gravity is enhanced by the higher density of

water than air. Turbines are expected to be placed in fast moving, shallow flows. Hence the Froude number

may be relatively high and changes to the free surface are likely, leading to additional flow confinement. In

order to investigate the combined effect of vertical shear and gravity on idealized turbines, an extension of

linear momentum actuator disc theory (LMADT) is used to estimate the thrust and power extracted by an

idealized turbine for two types of free surface inviscid flow. It is assumed that there is fast pressure recovery

and that the core flow contains self-similar velocity profiles. Results from a parameter study in which the

velocity profiles and turbine settings are varied show that idealized turbines operate at higher efficiency

under the effect of gravity, but operate at either higher or lower efficiency under shear flow. The proposed

model can also be used to investigate energy extracted by turbines in a periodically spaced array, enabling

better evaluation of array efficiency.

Keywords: Tidal stream energy, Three-dimensional LMADT, Shear flow, Free surface flow

1. Introduction

1.1. Preamble

Renewable energy devices designed to exploit the kinetic energy of moving water are invariably situated

in free surface flows that are sheared in the vertical by the presence of bed and free surface boundary layers.

Flow shear is particularly important for turbines located near the bed. In the simple case of boundary layer5

flow over a flat bed, the horizontal stream-wise velocity component has a vertical structure that may be
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approximated by a power or logarithmic law, with the velocity gradient being greatest close to the bed.

Thus the efficiency of each single turbine in an array is influenced by the effect of shear in the incoming flow,

and this should be important for the optimized spatial arrangement of the turbine array. Moreover, existing

theories used for tidal turbines are mainly built on those developed for wind turbines, and so miss some of10

the unique features of water: its higher density, the importance of the free surface, etc. The density of water

is three orders of magnitude larger than that of air, and the influence of gravity is thus more significant.

Its effect in water becomes even larger when the water surface deformation is also significant, such as at a

high blockage ratio or a large value of Froude number. To date, however, the overall effects of free surface

shear flow on hydro-kinetic, tidal stream, and ocean current energy extraction have not been investigated15

thoroughly.

1.2. LMADT Chronology

Linear momentum actuator disc theory (LMADT) is one of the most popular methods used to describe

energy addition or extraction from a flow, with applications ranging from the propulsion of ship propellers

to the power of tidal turbines. The underlying theory dates back to Rankine (1865), who proposed use20

of a porous actuator disc to represent a ship’s screw propeller (Okulov and van Kuik, 2012). In the mid

to late 1800s many researchers attempted to analyse propeller thrust using actuator disc models, but it

was not until 1889 that a correct description of such a flow was provided by Froude (1889) who included

accelerations both upstream and downstream of the propeller in the analysis. This did not end the debate

however, with different schools of thought remaining on how to model thrust on a propeller as an actuator25

disc using continuity, momentum, and energy principles.

In the early 20th C, researchers also began to apply actuator disc theory to determine the power extracted

by wind turbines. Lanchester (1915), Betz (1920), and Joukowsky (1920) adopted the basic principle of an

actuator disc to estimate the power coefficient of a wind turbine, with the latter two researchers determining

the well-known limiting ratio of 16/27 in unbounded flow. Despite progress made in early wind turbine30

performance studies, the predictive capability of the classical actuator disc model turned out to be limited

by assumptions of uniform oncoming flow and no lateral boundaries (Bahaj et al., 2012). Unfortunately, such

ideal cases hardly exist in the real world for either wind or water stream turbines. In practice, alternative

methods such as laboratory and field tests and numerical simulation provide further understanding (Draper

et al., 2016). However, theoretical models based on LMADT retain their value because of their speed of35

execution and the fact that they provide the user with more comprehensive insight into generic problems of

energy extraction by turbines. With this in mind, Wimshurst and Willden (2016) state that LMADT models

provide a useful baseline for the more complicated field scenarios that need to be considered in practice.

When LMADT was first applied to the assessment of tidal stream energy, Garrett and Cummins (2007)

introduced a volume-constrained actuator disc model (GC07 model) in order to deal with the blockage40
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effect by treating the free surface as a rigid-lid. Their results highlighted the significance of tidal channel

geometry on the performance of a tidal fence. By combining the GC07 model with an earlier 1D tidal

channel model (Garrett and Cummins, 2005), Vennell (2010, 2011) determined optimal turbine settings and

maximum efficiencies for turbine farms which fully blocked a channel. Nishino and Willden (2012, 2013)

studied energy extraction from partially blocked channels by extending the volume-constrained model using45

the idea of scale decomposition, which is based on (mass, momentum, energy) conservation relationships at

single turbine and array scales. All the foregoing models were limited to low Froude number cases because of

the rigid-lid assumption. Meanwhile, a free surface flow actuator disc model without mixing was developed

by Whelan et al. (2007, 2009), and this was later extended by Houlsby et al. (2008) who included the effect

of downstream mixing in the analysis. Houlsby et al.’s model enabled the investigation of tidal stream50

energy extraction under different Froude number conditions, and permitted investigation of equally spaced

tidal turbines (Draper, 2011). The aforementioned models assume uniform incoming flow, thus requiring

the turbines to be located sufficiently far from lateral boundaries (i.e. top, bottom and side boundaries) and

upstream turbines, which is not always the case in practice. Recently, Draper and Nishino (2014) developed

an actuator disc model that considers the interaction of two rows of turbines by dividing the incoming flow55

into a uniform core section and a uniform bypass section. This model breaks the distance limit required

for full mixing, and makes it possible to investigate densely spaced turbines. The model has been used to

study optimal arrangements for single and two row arrays, as well as the influence of turbine arrangements

on optimal spacing distances. Further progress in actuator disc theory has been achieved by Draper et al.

(2016) who developed an inviscid shear model for freely-expanded and volume-constrained scenarios. This60

model provides a first glimpse into the effects of sheared velocity distributions on turbine efficiency, in rigid-

lid flows. The extension enables momentum theory to interpret approximately force variation and energy

capture across a turbine for the first time.

Besides its direct application to tidal stream energy analysis, actuator disc theory is also useful for laboratory

experiments and numerical simulations. For example, Barnsley and Wellicome (1990) presented a blockage-65

correction methodology based on LMADT, versions of which are becoming widely used in tank experiments

and numerical simulations (Bahaj et al., 2007; Gauthier et al., 2016; Kinsey and Dumas, 2017). The

momentum actuator disc concept has also become a popular way of parametrizing turbines in numerical

models, both in idealized cases (Hunter et al., 2015; Nash et al., 2015), and in real cases (Adcock et al.,

2013; Karsten et al., 2013; Fallon et al., 2014; Nash et al., 2014; González-Gorbeña et al., 2015). Besides70

applications to water stream energy extraction, actuator disc theories have also been adopted to study

hydrodynamic loads on submerged objects, such as currents acting on offshore structures (Taylor, 1991;

Taylor et al., 2013; Santo et al., 2014).
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Figure 1: Overall view of non-uniform LMADT model

1.3. Synopsis

In this paper, linear momentum actuator disc theory is extended to investigate the effects of gravity and75

shear on the performance of ideal turbines in steady inviscid free surface flows. We start from the assumption

that there are negligible lateral energy exchanges between stream tubes before the wake pressure recovers

(i.e. length scale of pressure recovery is much shorter than that of wake mixing). This assumption proved

successful in the volume-constrained LMADT model for shear flow proposed by Draper et al. (2016). In §2,

the new model is first established in three spatial dimensions. The model is then simplified by adopting a80

second assumption of self-similar wake profiles applicable to ideal discs with uniform local resistance (Draper

et al., 2016). In §3, demonstrations of the proposed model are presented for vertical shear flows described

by power law and logarithmic velocity profiles. As a first step to investigate idealized turbine performance

in shear flow with gravity effects, we focus on two- and three-dimensional cases with vertical shear at this

stage. Finally, the discussion, main conclusions, and recommendations are given in §4.85

2. Analytical model

We first consider an actuator disc operating in an arbitrary shear flow, in water of finite depth. An overall

control volume is fitted to the water body, whose lateral boundaries are defined by streamlines (Figure 1).

The upstream boundary (marked as x1) and downstream internal boundary (marked as x4) are sufficiently
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far from the disc that the pressures are almost undisturbed.90

We now focus on an infinitesimal stream tube, denoted by a parameter vector ψψψ, which indicates both

the location and discharge of the stream tube (i.e. y = y(ψψψ), z = z(ψψψ) and dψψψ = u(ψψψ)dA(ψψψ) at an

arbitrary cross-section, where A is the cross-sectional area). This is analogous to the stream function in

two-dimensional and axisymmetric three-dimensional flows. For stream tubes intersecting with the actuator

disc, there is a resistance δT on the fluid. This force causes the flow to decelerate and thus the velocities95

at Section 2 and Section 4 are u2(ψψψ) = u(x2,ψψψ) = α2(ψψψ)u1(ψψψ) and u4(ψψψ) = u(x4,ψψψ) = α4(ψψψ)u1(ψψψ)

respectively, where α2(ψψψ), α4(ψψψ) ∈ [0, 1], and u1(ψψψ) is the velocity of the same steam tube at Section 1.

On the other hand, the fluid in stream tubes bypassing the disc accelerates and its velocity changes from

u2(ψψψ) = u(x2,ψψψ) = β2(ψψψ)u1(ψψψ) to u4(ψψψ) = u(x4,ψψψ) = β4(ψψψ)u1(ψψψ) as it passes through the two cross-

sections, noting that β2(ψψψ), β4(ψψψ) > 1. The adoption of ψψψ can be interpreted as a projection from Cartesian100

to stream function coordinates, as shown in figure 2. An important point to be noted here is the concrete form

of the forementioned parameter vector (or stream function) ψψψ. Based on knowledge from vector calculus,

an incompressible flow field can be defined as the curl of a vector field (noted as ψψψ)

uuu = ∇×ψψψ. (1)

Without loss of generality, Masatsuka (2013) write the vector field ψψψ in the form of ψψψ = ψgradχ (where ψ

and χ are both scalar fields) and transform Equation 1 into105

uuu = gradψ × gradχ. (2)

which means the velocity field uuu is tangent to the two families of surfaces defined by ψ and χ, and its

magnitude u = |gradψ||gradψ| sin θ, where θ indicates the angle between normals of the two surfaces. For a

cross-section perpendicular to the velocity field (as with the Sections shown in Figure 1), the area (on the

cross-section) bounded by two ψ-surfaces and two χ-surfaces can be calculated, wirtten as

dA =
dψdχ

|gradψ||gradψ| sin θ (3)

and thus the discharge in the stream tube (represented using dψψψ) bounded by the four surfaces is110

dψψψ = dQ = u(ψψψ)dA(ψψψ) = dψdχ. (4)

where Q is discharge. At this point, we find a parameter vector ψψψ = (ψ, χ) indicating both the location and

discharge of the stream tube, as required at the beginning of this section (§2).
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Figure 2: Projection from Cartesian to stream function coordinates (left: x-y-z system; right: x-ψ-χ system). Blue solid

lines demarcate control-volume boundaries separated by streamlines, Section 1 and Section 4, while black dashed lines indicate

lateral boundaries of the core flow and bypass flow. The transformation enables formulation of conservation laws within an

infinitesimal stream tube, see §2.1-§2.3.

2.1. 3 D model

In order to analyse the proposed flow field in Figure 1, the first assumption (A1) required is that the

wake pressure recovers quickly such that piezometric heads are uniform at Section 1 and Section 4. This115

assumption implies that the flow is hydrostatic at Section 1 and Section 4, and the water surface is uniform

in the transverse direction. Hence,

p1(ψψψ) + ρgz1(ψψψ) = p1 + ρgz1 (5)

and

p4(ψψψ) + ρgz4(ψψψ) = p4 + ρgz4 (6)

where px(ψψψ) is the pressure at the intersection of Section x and Streamline ψψψ, zx(ψψψ) is the vertical coordinate

of the intersection, and ψψψ is the analogous stream function which defines the specified streamline.120

(1) Mass conservation

A tidal period is of the scale of days (e.g. 12.5 hours), which is much longer than the periods of tidal

turbine rotors. For this reason, when analyzing the force applied on a rotor, the flow is often taken to be125

approximately steady. So tidal turbines are designed to operate in quasi-steady flows. For mass conserva-

tion to be satisfied, the discharge must remain constant within any steam tube bounded by streamlines.

Specifically, for the core flow at Sections 1, 2 and 4, we have

dψψψt1 = dψψψt2 = dψψψt4 = dψψψt (7)
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and for the bypass flow at Sections 1, 2, and 4, we have

dψψψb1 = dψψψb2 = dψψψb4 = dψψψb (8)

where ti and bi represent the core and bypass flows at Cross-section i, respectively. After manipulation,130

Equations 7 and 8 give

α2(ψψψ)u1(ψψψ)
dψψψ

u2(ψψψ)
− α4(ψψψ)u1(ψψψ)

dψψψ

u4(ψψψ)
= 0, ψψψ ∈ {ψψψt}, (9)

and

u1(ψψψ)
dψψψ

u1(ψψψ)
− β4(ψψψ)u1(ψψψ)

dψψψ

u4(ψψψ)
= 0, ψψψ ∈ {ψψψb}, (10)

where {ψψψt} and {ψψψb} represent the sets composed of the core flow streamlines and bypass flow streamlines

respectively. Eliminating u1(ψψψ) from Equations 9 and 10, and integrating give

¨
t

α2(ψψψ)dA2 −
¨
t

α4(ψψψ)dA4 = 0 (11)

and135 ¨
b

1

β4(ψψψ)
dA1 −

¨
b

dA4 = 0. (12)

(2) Energy conservation

Here, mixing occurs only after Section 4 and no shear effect exists within the control volume between

Section 1 and Section 4. These prerequisites ensure that the actuator disc is the sole source of energy

variation between Section 1 and Section 4. Thus, the energy of the core flow is conserved between Section140

1 and Section 2, and Section 3 and Section 4. Hence,

p1(ψψψ) + ρgz1(ψψψ) +
ρ[u1(ψψψ)]2

2
= p2(ψψψ) + ρgz2(ψψψ) +

ρ[u2(ψψψ)]2

2
, ψψψ ∈ {ψψψt}, (13)

and

p3(ψψψ) + ρgz3(ψψψ) +
ρ[u3(ψψψ)]2

2
= p4(ψψψ) + ρgz4(ψψψ) +

ρ[u4(ψψψ)]2

2
, ψψψ ∈ {ψψψt}. (14)

For the bypass flow, energy is conserved between Section 1 and Section 4, and so

p1(ψψψ) + ρgz1(ψψψ) +
ρ[u1(ψψψ)]2

2
= p4(ψψψ) + ρgz4(ψψψ) +

ρ[u4(ψψψ)]2

2
, ψψψ ∈ {ψψψb}. (15)

The pressure difference across the disc can then be obtained by combining Equations 13-15,

δT = p2(ψψψ)− p3(ψψψ) = ∆p′ +
ρ

2
[u1(ψψψ)]2(1− [α4(ψψψ)]2), ψψψ ∈ {ψψψt}, (16)

where ∆p′ is the piezometric head difference between Section 1 and Section 4, which can be written as145

∆p′ =
ρ

2
[u1(ψψψ)]2([β4(ψψψ)]2 − 1), ψψψ ∈ {ψψψb}. (17)
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The piezometric head difference is uniform over the cross-section according to assumption A1. Thus ∆p′

can be obtained from u1(ψψψ) and β4(ψψψ) along any stream tube in the bypass flow. As described by Draper

et al. (2016), a single parameter representation of β4(ψψψ) can be obtained by manipulating Equation 17 to

give

β4(ψψψ) = [1 +
u′21

[u1(ψψψ)]2
(β′24 − 1)]1/2, ψψψ ∈ {ψψψb}, (18)

where u′1 = u1(ψψψ′) and β′4 = β4(ψψψ′), ψψψ′ ∈ {ψψψb}, representing the upstream velocity and acceleration at150

Section 4 along an arbitrary bypass stream tube.

(3) Momentum conservation

To complete the analysis, conservation of momentum (x component) for the overall control volume CV155

between Section 1 and Section 4 (including both the core flow and the bypass flow) leads to

X − T =

¨
t&b

ρ[u4(ψψψ)]2
dψψψ

u4(ψψψ)
−
¨
t&b

ρ[u1(ψψψ)2]
dψψψ

u1(ψψψ)
(19)

where

X =

‹
CV

pxds

=

¨
CVend

px(ψψψ)
dψψψ

ui(ψψψ)
+

¨
CVside

pxds

=

¨
t&b

p1(ψψψ)
dψψψ

u1(ψψψ)
−
¨
t&b

p4(ψψψ)
dψψψ

u4(ψψψ)
+

¨
CVside

pxds

(20)

in which px is the x pressure component at the surfaces of the overall control volume, CVend represents

the two end surfaces of the control volume and CVside represents the lateral surfaces of the control volume.

Equation 20 can be simplified by ignoring certain small terms, as discussed by Sørensen (2011). In the160

present study, the pressure force (x component) is neglected on lateral surfaces of the overall control body,

which comprise a water-air interface, a flat bed, and two parallel side boundaries. At the air water-air

interface, the pressure force can be neglected because of the huge density difference between water and air.

At the flat bed, the x component of the pressure force is equal to zero because the flat bed is parallel to

the x axis. At the side wall boundaries, the inclusion of bypass flow in the overall control body partly165

compensates for streamline deformation. It is reasonable to neglect the x-component of the pressure on the

two side boundaries when the lateral boundaries are located far from the disc or when the actuator discs are

periodically spaced, which is usually the case in the present study. This allows us to ignore the last term in

Equation 20. Eliminating T and X in Equation 19 using Equation 16 and 20 gives¨
t&b

p1(ψψψ)
dψψψ

u1(ψψψ)
−
¨
t&b

p4(ψψψ)
dψψψ

u4(ψψψ)
−
¨
t

(∆p′ +
ρ

2
[u1(ψψψ)]2(1− [α4(ψψψ)]2))

dψψψ

u2(ψψψ)

=

¨
t&b

ρ[u4(ψψψ)]2
dψψψ

u4(ψψψ)
−
¨
t&b

ρ[u1(ψψψ)2]
dψψψ

u1(ψψψ)
.

(21)
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After manipulation, 21 becomes170

¨
t&b

p1(ψψψ)
dψψψ

u1(ψψψ)
−
¨
t&b

p4(ψψψ)
dψψψ

u4(ψψψ)
−
¨
t

(∆p′ +
ρ

2
[u1(ψψψ)]2(1− [α4(ψψψ)]2))

dψψψ

u2(ψψψ)

= ρ

¨
t

[u1(ψψψ)]([α4(ψψψ)]− 1)dψψψ + ρ

¨
b

[u1(ψψψ)]([β4(ψψψ)]− 1)dψψψ

(22)

where the first and second terms represent total pressures at Section 1 and Section 4 respectively, the third

term represents the pressure difference across the disc, the fourth and last terms are the net x-component

momentum changes of the core flow and bypass flow. Furthermore, the first two terms can be substituted

by a simplified relationship between the pressure and cross-sectional area. If the lateral boundaries of the

overall control volume are assumed to be vertical at Section 1 and Section 4 (a reasonable assumption when175

the lateral boundaries are far from the disc or the actuator discs are periodically spaced), then the pressure

terms can be written ¨
t&b

pi(ψψψ)
dψψψ

ui(ψψψ)
=
ρgA2

i

2wi
(23)

at Section i (i = 1, 4), and are equal to half the product of the piezometric head and the cross-sectional area

because of the hydrostatic assumption at the two cross-sections. Then the following relationship between

A1 and A4 can be obtained using 17 and 23, giving180

A4 =
w4

w1
A1 −

w4

2g
u′21 (β′24 − 1) (24)

where wi (i = 1, 4) is the width of the cross-section at i, and A1 and A4 are the cross-sectional areas at

Section 1 and Section 4 respectively. Equations 23 and 24 enable the pressure terms to be represented using

A1, which is a known parameter under specified conditions.

(4) Summary185

In the final step of the derivation, Equations 17, 23, and 24 are substituted into Equation 22 and

manipulated to give

gA2
1

2w1
− g

2w4
(
w4

w1
A1 −

w4

2g
u′21 (β′24 − 1))2 − ∆p′

ρ
BA1 −

1

2

¨
t

u1(ψψψ)
1− [α4(ψψψ)]2

α2(ψψψ)
dψψψ

=

¨
t

u1(ψψψ)(α4(ψψψ)− 1)dψψψ +

¨
b

u1(ψψψ)([1 +
u′21

[u1(ψψψ)]2
(β′24 − 1)]1/2 − 1)dψψψ

(25)

where B is the blockage ratio, defined as the ratio between the actuator disc area Adisc and the upstream

cross-sectional area A1 of the overall control volume. Meanwhile, Equations 11, 12, 18, and 24 can be190

combined to give the following implicit constraint for a4(ψψψ)

¨
t

1

α4(ψψψ)

dψψψ

u1(ψψψ)
+

¨
b

[1 +
u′21

[u1(ψψψ)]2
(β′24 − 1)]−1/2

dψψψ

u1(ψψψ)
=
w4

w1
A1 −

w4

2g
u′21 (β′24 − 1). (26)
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For a given case, the cross-sectional area A1, and section widths w1 and w4 can be determined once the

control volume is prescribed. The remaining variables are β′4, α2(ψψψ) and a4(ψψψ). If the distribution of α4(ψψψ)

can be obtained (i.e. α4(ψψψ) = α′4f(ψψψ) and f(ψψψ) is known, where α′4 is a constant and f(ψψψ) is the distribution195

function), then α′4 can be represented with β′4 using Equation 26. Next, an explicit relationship between

α4(ψψψ) and β′4 can be obtained. Thus the model comprising Equations 25 and 26 can be simplified to a

univariant system in β′4, involving case-specific parameters indicating the velocity deficit distribution α2(ψψψ).

2.2. 2.5 D model

As a preliminary study, the model is further simplified by assuming the core wake profiles to be self-200

similar (assumption A2). This assumption restricts the analysis to scenarios where α2 and α4 are uniform,

similar to cases of resistance where geometric blockage and shear are not excessive (following Draper et al.

(2016)), so that

α2(ψψψ) = α2, (27)

and

α4(ψψψ) = α4. (28)

Adopting assumption A2, Equation 25 can be simplified to give205

gA2
1

2w1
− g

2w4
(
w4

w1
A1 −

w4

2g
u′21 (β′24 − 1))2 − ∆p′

ρ
BA1 −

1− α2
4

2α2

¨
t

u1(ψψψ)dψψψ

=(α4 − 1)

¨
t

u1(ψψψ)dψψψ +

¨
b

u1(ψψψ)([1 +
u′21

[u1(ψψψ)]2
(β′24 − 1)]1/2 − 1)dψψψ.

(29)

Meanwhile, Equations 11, 12, 18, and 24 can be combined to give the following explicit relationship between

a2 and a4
α2

α4
BA1 +

¨
b

[1 +
u′21

[u1(ψψψ)]2
(β′24 − 1)]−1/2

dψψψ

u1(ψψψ)
=
w4

w1
A1 −

w4

2g
u′21 (β′24 − 1). (30)

By eliminating either α4 (or α2) in Equation 29 using Equation 30, the model can be simplified to a single

variable (β′4) equation, involving case-specific parameters comprising the velocity deficit coefficient α2 (or

α4), blockage ratio B (or disc area), and an upstream velocity profile.210

When investigating the thrust and power performance of a water turbine in shear flow, it is useful to

distinguish between different definitions of average n-th power upstream velocities, i.e.

Un∗ =
1

α2Adisc

¨
t

[u1(ψψψ)]n
dψψψ

u1(ψψψ)
(31)

and

Un =
1

Adisc

¨
t′

[u1(z)]ndA (32)

where Adisc is the area of the actuator disc, t represents the upstream flow passing through the strip, and t′

the upstream flow within the area range of the strip. The two definitions are equivalent (both equal to U
n
)215
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when the flow is uniform. However, differences exist when shear occurs, causing the upstream flow location

and velocity magnitude to vary. According to the two definitions, the thrust and power coefficients can be

defined respectively as

Ct =
T

1
2ρAdiscU

2
∗
, Cp =

P
1
2ρAdiscU

3
∗

(33)

and

C ′t =
T

1
2ρAdiscU

2
, C ′p =

P
1
2ρAdiscU

3
(34)

where T =
˜
t
δT dψψψ

α2u1(ψψψ)
is the thrust applied, and P =

˜
t
δTα2u1(ψψψ) dψψψ

α2u1(ψψψ)
is the power extracted by the220

disc.

To consider energy loss due to wake mixing, we need to compute the energy budget between Section 4

and a section (Section 5 in Figure 1) sufficiently far downstream for the velocity profile to recover to an

equilibrium state. If the velocity profile at Section 5 is assumed to be self-similar to that of Section 1, then

the velocity profile at Section 5 can be written,225

u5(ψψψ) = γ5u1(ψψψ) (35)

where γ5 is a constant representing the velocity ratio between Section 1 and Section 5. Applying momentum

conservation between the two sections results in

gA2
1

2w1
− g

2w5
((A1/w1 −∆h)w5)2 − T

ρ
=

¨
t&b

γ5u1(ψψψ)dψψψ −
¨
t&b

u1(ψψψ)dψψψ, (36)

where ∆h is the water level drop between Section 1 and Section 5, and T is the thrust. Meanwhile, mass

conservation between the two sections requires

γ5 =
A1

A5
=

A1

(A1/w1 −∆h)w5
. (37)

Manipulating Equation 36 gives230

g

2w5
A3

5 + (−gA
2
1

2w1
+
T

ρ
−
¨
t&b

u1(ψψψ)dψψψ)A5 +

¨
t&b

γ5u1(ψψψ)dψψψ = 0. (38)

This is a cubic equation in cross-sectional area A5, which can be solved once the thrust T is determined

from the shear LMADT model. Thus the total power removed from water per width can be represented

(using A5) as

PTot = ρg(A1/w1−A5/w5)

¨
t&b

dψψψ − ((A1/A5)2 − 1)

¨
t&b

ρu1(ψψψ)2

2
dψψψ. (39)

The basin efficiency can be calculated using

η =
P

PTot
= P/

(
ρg(A1/w1−A5/w5)

¨
t&b

dψψψ − ((A1/A5)2 − 1)

¨
t&b

ρu1(ψψψ)2

2
dψψψ

)
. (40)
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To derive the 2.5 D model, the core wake profiles are presumed self-similar. Before further simplification235

and application of the model, it is valuable to have a brief discussion of the validity of this assumption. We

introduce a local resistance coefficient k(ψψψ), such that the thrust applied on a micro stream tube can be

written,

δT =
1

2
ρk(ψψψ)[α2(ψψψ)u1(ψψψ)]2, ψψψ ∈ {ψψψt}. (41)

Comparing Equation 41 with Equations 16, 17 and 18, the distribution of k can be written,

k(ψψψ) =
1

[α2(ψψψ)]2

(
1− [α4(ψψψ)]2 +

u′21
[u1(ψψψ)]2

(β′24 − 1))

)
, ψψψ ∈ {ψψψt}. (42)

It can be seen that the resistance needed to form a target core wake profile α2(ψψψ) or α4(ψψψ) is determined by240

both the upstream velocity profile u1(ψψψ) and accleration of bypass flow (described by u′1 and β′4). As with

the discussion by Draper et al. (2016) for two dimensional shear flow cases, when self-similar core wakes are

required, k(ψψψ) reduces to the following function of u1(ψψψ)

k(ψψψ) =
1

α2
2

(
1− α2

4 +
u′21

[u1(ψψψ)]2
(β′24 − 1))

)
, ψψψ ∈ {ψψψt}. (43)

Equation 43 defines the discs for which the presented model is valid. Such discs may differ from more com-

monly encountered uniform discs. The extent to which the self-similar assumption is valid will be further245

discussed in §4.
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Figure 3: Two-dimensional LMADT model in shear flow

2.3. 2 D model

For cases where the actuator disc (strip) is very wide (in the transverse direction) and vertical velocity

profiles are similar along the strip (such as a tidal fence), the flow presents quasi-two-dimensional features250

(as shown in Figure 3). Thus, the model can be further reduced to two dimensions. Equation 29 is then

rewritten

1

2
gh21 −

1

2
g(h1 −

1

2g
u′21 (β′24 − 1))2 − 1

2
u′21 (β′24 − 1)Bh1 −

1− α2
4

2α2

ˆ
t

u1(ψ)dψ

=(α4 − 1)

ˆ
t

u1(ψ)dψ +

ˆ
b

u1(ψ)([1 +
u′21

[u1(ψ)]2
(β′24 − 1)]1/2 − 1)dψ

(44)

where h1 is the water depth at Section 1 and ψ is two-dimensional stream function. Equation 30 becomes

α2

α4
Bh1 +

ˆ
b

[1 +
u′21

[u1(ψ)]2
(β′24 − 1)]−1/2

dψ

u1(ψ)
= h1 −

1

2g
u′21 (β′24 − 1). (45)

This simplifies to give

1

2
gh21 −

1

2
g(h1 −

1

2g
u′21 (β′24 − 1))2 − 1

2
u′21 (β′24 − 1)Bh1 −

1− α2
4

2α2
I1

=(α4 − 1)I1 + I2

(46)

and255

α2

α4
Bh1 + I0 = h1 −

1

2g
u′21 (β′24 − 1), (47)

where

I0 =

ˆ
b

[1 +
u′21

[u1(ψ)]2
(β′24 − 1)]−1/2

dψ

u1(ψ)
, (48)

I1 =

ˆ
t

u1(ψ)dψ, (49)
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and

I2 =

ˆ
b

u1(ψ)([1 +
u′21

[u1(ψ)]2
(β′24 − 1)]1/2 − 1)dψ. (50)

Again, a univariant equation of β′4 can be obtained by eliminating α4 (or α2) in Equation 46 using Equation

47. A bisection method is adopted by the authors to solve the equation. Similar to the three-dimensional260

scenario, definitions of average n-th power upstream velocities are written as

Un∗ =
1

α2l

ˆ
t

[u1(ψ)]n
dψ

u1(ψ)
(51)

and

Un =
1

l

ˆ
t′

[u1(z)]ndz, (52)

where l is the height of the strip. Two-dimensional thrust and power coefficients can be defined respectively

as

Ct =
T

1
2ρlU

2
∗
, Cp =

P
1
2ρlU

3
∗

(53)

and265

C ′t =
T

1
2ρlU

2
, C ′p =

P
1
2ρlU

3
(54)

where T =
´
t
δT dψ

α2u1(ψ)
is the thrust applied on the strip per unit length, and P =

´
t
δTα2u1(ψ) dψ

α2u1(ψ)
is

the power extracted by the strip per unit length. Considering energy loss due to wake mixing in a similar

fashion to the three-dimensional case, the velocity profile at Section 5 in the two-dimensional case can be

written as

u5(ψ) = γ5u1(ψ). (55)

Applying momentum conservation between the two sections results in270

1

2
gh21 −

1

2
g(h1 −∆h)2 − T

ρ
=

ˆ
t&b

γ5u1(ψ)dψ −
ˆ
t&b

u1(ψ)dψ, (56)

where ∆h is the water level drop between Section 1 and Section 5, and T is the thrust per unit width.

Meanwhile, mass conservation between the two sections requires

γ5 =
h1

h1 −∆h
. (57)

Substituting Equation 57 into Equation 56 and manipulating gives

1

2

∆h3

h31
− 3

2

∆h2

h21
+ (1− Fr′2 +

T

ρgh21
)
∆h

h1
− T

ρgh21
= 0, (58)

where Fr′ =
√ ´

t&b
u1(ψ)dψ

gh1
/h1. This is a cubic equation in water level difference ∆h which can be solved

once the thrust T is given by the shear LMADT model. The total power removed from water per width can275

be represented (using ∆h) as

PTot = ρg∆h

ˆ
t&b

dψ − ((
h1

h1 −∆h
)2 − 1)

ˆ
t&b

ρu1(ψ)2

2
dψ (59)
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and the basin efficiency given by

η =
P

PTot
=

P

ρg∆h
´
t&b

dψ
(1− Fr′′2 1− (1/2)∆h/h1

(1−∆h/h1)2
)−1, (60)

where Fr′′ =
√´

t&b
u1(ψ)2

gh1
dψ/
´
t&b

dψ.

3. Demonstration cases

As a first step towards investigating idealized turbine performance in shear flow including the effect of280

gravity, we examine cases with two-dimensional uniform upstream flow (to verify the model), followed by

two parameter studies involving vertical shear profiles described by power and logarithmic laws.

3.1. Uniform flow

Uniform flow can be considered a particular type of power law shear flow (when the shear effect is

infinitesimally small) which can provide a verification test of the proposed model. For uniform flow, the285

upstream velocity profile u1(ψ) and bypass flow acceleration coefficient β4(ψ) are written as

u1(ψ) = U (61)

and

β4(ψ) = β4, (62)

where U is the depth-averaged velocity of the incoming flow, and β4 is a constant. Substituting Equations

61 and 62 into Equations 48 to 50 gives

I0 =
(1/B − α2)

β4
l, (63)

290

I1 = U2α2l, (64)

and

I2 = U2(β4 − 1)(
1

B
− α2)l, (65)

where l is the height of the strip and l/B = h1. Then Equations 46 and 47 can be written as

1

2
g[(

l

B
)2 − (

l

B
− 1

2g
U2(β2

4 − 1))2]− 1

2
U2l(β2

4 − α2
4)

=U2lα2(α4 − 1) + U2l(β4 − 1)(
1

B
− α2)

(66)

and
α2

α4
l +

(1/B − α2)

β4
l =

l

B
− 1

2g
U2(β2

4 − 1), (67)
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which are equivalent to the volume-pressure constrained LMADT model proposed by Houlsby et al. (2008)

and Whelan et al. (2007, 2009). If α2 (or alternatively α4) is selected to represent the flow resistance of295

the actuator strip, then the strip’s thrust and power performance can be evaluated once the blockage ratio

B and Froude number Fr are specified. Figure 4 compares power coefficients obtained using the proposed

model with those from Houlsby et al.’s volume-pressure constrained LMADT model. The two sets of re-

sults agree exactly, implying that the two models are equivalent for cases where the incoming flow is uniform.

300

0.0 0.2 0.4 0.6 0.8 1.0

2

0.0

0.2

0.4

0.6

0.8

1.0

C
p

Fr = 0.1
Fr = 0.2
Fr = 0.3
Fr = 0.4

Idealized turbine

Figure 4: Comparisons between results from Houlsby et al.’s (2008), Whelan et al.’s (2007,2009) model (crosses) and the

present model (lines) for Fr = 0.1, 0.2, 0.3, 0.4, at blockage ratio B = 1/6

Figure 5 shows the blockage ratio B and Froude number Fr parameter spaces over which physically

admissible results can be obtained for specified values of α2. Each dashed line separates the figure into a

lower left physically admissible region and upper right physically inadmissible region. An actuator operating

at lower α2 results in a smaller admissible region (in terms ofB and Fr). This can be explained by considering

the limitation encountered by the free surface in balancing the strip. As α2 decreases, the strip has a stronger305

influence on the flow, which needs to be balanced by a larger background piezometric head gradient ∆p′

between the upstream and downstream ends of the strip. However, adjustment of the downstream flow

regime alone cannot achieve this target at extremely small α2 values. This implies that the upstream flow

must also be changed. Such scenarios can be compared to flows passing through a Venturi flume. A throat

that is too narrow causes the upstream water level to rise until an equilibrium state is reached. It should be310

mentioned that the whole of the practically important solution space for tidal stream energy projects (blue

dashed box, corresponding to Fr < 0.2 and B < 0.2) lies within the admissible regions.
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Figure 5: Boundaries of physically admissible Froude numbers and blockage ratios for α2 = 0.01, 0.2, 0.5, 0.8, 0.99 (the blue

dashed box delineates the practically important space for tidal stream energy projects)

3.2. 2D Power law shear flow

Power law velocity profiles were originally used as empirical fits to data from pipe experiments conducted

by Nikuradse and later used to model boundary layers on flat plates (Schlichting, 1955), for which both315

symmetric and asymmetric shear flows can be described. Selected extreme (linear & uniform) and often-

used (1/5 & 1/7) power law distributions will be adopted for demonstration purposes in the following

subsections. Considering a symmetric shear flow, the power law approximation to the upstream velocity

profile can be written as

u1(z) = U(1− 2
|z|B
l

)n (68)

where z is the vertical elevation taken as positive upwards from the centre of the strip (i.e. from mid-depth320

of the upstream flow). Thus the discharge ψ between the bed and z can be obtained by integration as

ψ(z) =

ˆ z

0

u1(z)dz =


Ul

2B(n+ 1)
(1 + 2

zB

l
)n+1 − l

2B
6 z 6 0

Ul

2B(n+ 1)
(1− 2

zB

l
)n+1 0 6 z 6

l

2B
.

(69)

Representing z in terms of ψ using Equation 69 and substituting into Equation 68 gives

u1(ψ) =


U(

2B(n+ 1)

Ul
(
ψ2

x
+ ψ))n/(n+1) − ψ2

2
6 ψ 6 0

U(
2− 2B(n+ 1)

l
U1/n(

ψ2

x
+ ψ))n/(n+1) 0 6 ψ 6

ψ2

2
,

(70)

where 
ψ1 =

Ul

B(n+ 1)
− Ul

B(n+ 1)
(1− a2B)n+1

ψ2 =
Ul

B(n+ 1)
,

(71)
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in which ψ1 defines the discharge passing through the strip and ψ2 defines the total discharge through the

control volume. Substitution of the above results into Equation 48 to 50 gives values for I0, I1 and I2, then325

α4 (or α2 if α4 is specified to represent the flow resistance of the strip) can be calculated using Equation

47, and β′4 can be determined by solving Equation 46. These coefficients finally enable us to evaluate the

performance of the strip using Equations 53 and 54.

Figure 6 shows the dependence of power coefficient Cp on α2 given by Equation 53 for symmetric power330

law profiles of different shapes (n = 0, 1/7, 1/5, 1). For comparison against results from Draper et al. (2016),

we set the geometric blockage ratio B = 1/6 and 1/2, and the Froude number Fr = 0.1 (defined using

maximum velocity U). The dashed lines present the corresponding uniform flow results where n = 0,

obtained equally from either the general power law model (in the present subsection) or the uniform model

(in the previous subsection). It can be seen from the figures that increasing shear (as n increases), causes335

the power coefficient to decrease (in this case where the strips are located at mid-depth). The optimal power

coefficients for B = 1/6 and 1/2 drop by 29% and 63% for the extreme shear profile (n = 1, i.e. linear

profile) with respect to the uniform flow profile, in a similar fashion to volume-constrained flows (Draper

et al., 2016).
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Figure 6: Variation in power coefficient Cp with α2 for power law velocity profiles (n = 0, 1/7, 1/5, 1), at Fr = 0.1 for: (a)

B = 1/6; and (b) B = 1/2. The disc is deployed at water mid-depth, where inflow is vertically symmetrical

Unlike a volume-constrained flow, whose velocity scale has no influence on the power coefficient of the340

actuator for a specific profile shape, the velocity is important in a free surface flow. More exactly, the Froude

number is a primary factor because it reflects the amount by which the free surface will deform. Figure 7

shows the relationship between the power coefficient Cp and α2 for linear shear flows at Froude numbers

ranging from 0.1 to 0.5, and includes results from the volume-constrained shear LMADT model of Draper

et al. (2016). Figure 7(a) shows that the values of power coefficient predicted by the two models converge345

when the strip influence is small (i.e. for large α2 and small B), especially for subcritical flows at low Froude
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numbers. However, gravity-induced improvements in power coefficient become significant as B increases

from 1/6 to 1/2. Furthermore, the predictions by the free surface model tend asymptotically to those by

the volume-constrained model as Fr → 0. This phenomenon is related to the milder free surface changes

that occur at lower Froude numbers. On the other hand, volume-constrained constant density flows can be350

thought of as occurring in a medium of infinitely large elastic modulus, where wave speeds are infinite, and

so the ratio of water particle velocity to wave speed approaches zero, analogous to the situation as Fr → 0.

Figures 6 and 7 also indicate that higher values of optimal power coefficient are obtained as the blockage

ratio is increased from 1/6 to 1/2. However, a sufficiently large blockage ratio combined with strong influ-

ence of the disc on the flow (i.e. small α2) results in disappearance of physically admissible solutions to the355

model, as shown in Figure 7(b). This is because the upstream flow has to change in order to reach steady

state, as discussed in Section 3.1.
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Figure 7: Variation in power coefficient Cp with α2 for power law velocity profile n = 1/7 at Fr = 0.1, 0.2, 0.3, 0.5 for: (a)

B = 1/6; and (b) B = 1/2. The crosses are results from volume-constrained LMADT model (Draper et al., 2016). The disc is

deployed at water mid-depth, where inflow is vertically symmetrical

For boundary layer flows induced by bed friction with negligible free surface stresses, the asymmetric

power law provides a category of simple, frequently-used distributions for velocity profiles (Bahaj et al.,360

2012), which can be written as

u1(zb) = U(
zbB

l
)n (72)

where the elevation zb is 0 at the bed and taken positive upwards. Thus the discharge ψ between the bed

and a given level zb is given by

ψ(zb) =

ˆ zb

0

u1(zb)dzb =
Ul

B(n+ 1)
(
Bzb
l

)n+1. (73)

Representing zb in terms of ψ using Equation 73 and substituting into Equation 72 gives

u1(ψ) = U1/(n+1)(
B(n+ 1)ψ

l
)n/(n+1). (74)
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For asymmetric shear flows, we use a constant value of depth-averaged velocity U in the present parameter365

study. Using Equation 73 for a given depth-averaged velocity U , the maximum velocity is expressed as

U = (n+ 1)U. (75)

In a similar manner to the analysis of symmetric power law profiles, the functions ψ′1, ψ′2 and ψ′3 are used to

represent discharges passing through different parts of the control volume, where ψ′2−ψ′1 defines the discharge

passing through the strip, ψ′1 defines the lower bypass discharge and ψ′3 defines the total discharge. ψ′1, ψ′2

and ψ′3 are given by370 

ψ′1 =
Ul

B(n+ 1)
(
zdB

l
− a2B

2
)n+1

ψ′2 =
Ul

B(n+ 1)
(
zdB

l
+
a2B

2
)n+1

ψ′3 =
Ul

B(n+ 1)
.

(76)

Substitution of the above into Equations 48 to 50 enables calculation of I0, I1 and I2, after which α4 and β′4

are obtained from Equation 47 and Equation 46. The performance of the strip is evaluated using Equations

53.

Figure 8 illustrates the dependence of power coefficient Cp on coefficient α2 for strips located at mid-

depth, with the velocity described by various asymmetric power law profiles (n = 0, 1/7, 1/5, 1), at a geomet-375

ric blockage ratio B = 1/6. Here, the Froude number of free surface flow with an asymmetric velocity profile

is defined using the depth-averaged velocity U , and has a value Fr = 0.1. The dashed line presents the

uniform flow (n = 0) results obtained for the same discharge. It can be seen that increasing flow shear (as

the value of n rises) causes the power coefficient to decrease at a similar scale to that obtained in symmetric

power law shear flows. The optimal power coefficients obtained for B = 1/6 are reduced by 6%, 9%, 23%380

for 1/7 power law shear flow, 1/5 power law shear flow and linear shear flow respectively .
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Figure 8: Variation in power coefficient Cp with α2 for asymmetric power law velocity profiles (n = 0, 1/7, 1/5, 1), at blockage

ratio B = 1/6 and Froude number Fr = 0.1. The disc is deployed at mid-depth of the power-law shear flow
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Figure 9 presents the power coefficient distributions with α2 for asymmetric power law shear flows where

n = 1/7, at Froude numbers Fr = 0.1, 0.2, 0.3, 0.5. For a strip located at mid-depth, gravity effects raise

the magnitude of power coefficient, especially for strips that have strong influence on the core flow velocity

(i.e. small α2). As α2 decreases and Fr increases, more significant water level drops occur between Section385

1 and Section 4. This pressure gradient acts as an additional source of extractable energy within the control

volume.
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Figure 9: Variation in power coefficient Cp with α2 for an asymmetric power law velocity profile with n = 1/7 , at blockage

ratio B = 1/6 and Froude numbers Fr = 0.1, 0.2, 0.3, 0.5. The disc is deployed at mid-depth of the power-law shear flow

Figure 10: (a) Maximum power coefficient Cp and (b) corresponding α2 for different blockage ratios B and non-dimensional

strip positions zd/zdmax, at Froude number Fr = 0.1 and power law velocity profile n = 1/7. The disc is deployed at different

elevations in the power-law shear flow for varing blockage ratio

Figure 10 shows contours of maximum power coefficient Cp and corresponding α2 with respect to blockage

ratio B and non-dimensional strip position zd/zdmax, at Fr = 0.1 and for an asymmetric power law velocity

profile with n = 1/7. Figure 10(a) indicates that a higher peak power coefficient is achieved as the strip390
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is moved downwards. This phenomenon can be attributed to the low velocity region near the bed, which

increases the velocity ratio between bypass and core flows. Meanwhile, Figure 10(b) implies that weaker

strips (i.e. higher α2) are required to achieve optimum energy extraction as the strip elevation increases,

especially at low values of blockage ratio. It should be noted that blockage effects invariably improve

strip performance until the upstream flow becomes unstable. Higher blockage ratios require stronger strips395

(smaller α2).

3.3. 2D Logarithmic shear flow

For logarithmic shear flows (Schlichting, 1955), the upstream velocity profile can be written as

u1(zb) =


u∗
κ

ln(
zb
z0

), zb > z0

0, zb < z0,

(77)

where κ is the von Kármán constant, u∗ is friction velocity, and z0 is bed roughness height. Integrating the

velocity from the bed at z = 0 to the strip centre location z = zb, the discharge ψ is expressed as400

ψ(z) =

ˆ zb

0

u1(zb)dzb =


zb(−1 + ln(zb/z0))u∗

κ
+
z0u∗
κ

, zb > z0

0, zb < z0.

(78)

Representing zb in terms of ψ using Equation 78 and substituting into Equation 77 gives

u1(ψ) =


u∗
κ

ln(
κψ − z0u∗

z0W (κψ−z0u∗ez0u∗
)u∗

), ψ > 0

0, ψ = 0

(79)

where W (x) is the Lambert W function, the inverse solution to f(z) = zez. For a specified depth-averaged

velocity U , the friction velocity u∗ can be determined (after manipulating Equation 78) from

u∗ =
κ

−1 + ln(h1/z0) + z0/h1
U (80)

The discharge coefficients ψ′1, ψ′2 and ψ′3 are defined in the same way as for the asymmetric power law cases,

using405 

ψ′1 =
(zd − a2l/2)(−1 + ln((zd − a2l/2)/z0))u∗

κ
+
z0u∗
κ

ψ′2 =
(zd + a2l/2)(−1 + ln((zd + a2l/2)/z0))u∗

κ
+
z0u∗
κ

ψ′3 =
(l/B)(−1 + ln((l/B)/z0))u∗

κ
+
z0u∗
κ

.

(81)

Following the same calculation procedure, the above results can be substituted into Equations 48 to 50 to

calculate I0, I1 and I2, and α4 and β′4 can be solved in sequence using Equations 47 and Equation 46. The

strip performances are evaluated using Equations 53.
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For natural and engineering flows, the roughness height z0 can be estimated on the basis of Nikuradse’s

experiments, with z0 = ks/30 providing a satisfactory fit to hydrodynamically rough flows, where ks can410

be calculated from ks = 2.5d50 and d50 is the median size of the bed material (Soulsby, 1997). Following

the categorization proposed by Wentworth (1922), we select d50 = 1 mm and 64 mm as representative

diameters for sediment particles comprising sand and gravel beds. Figure 11 shows the variation of power

coefficient Cp with α2 for logarithmic shear flows over the sand and gravel beds at different Froude numbers

Fr = 0.1, 0.2, 0.3, 0.5. Here the strip is located at mid-depth. As expected, gravity effects again improve415

power performance at moderate values of α2 but are also prone to be unstable, as previously found in the

power law cases. The power performances of the strips are similar for both classes of shear flows. This is

because the two profiles are approximations to actual velocity profiles, and the curves are similar to each

other.
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Figure 11: Power coefficient Cp for a logarithmic velocity profile at Froude numbers Fr = 0.1, 0.2, 0.3, 0.5, blockage ratio

B = 1/6, above: (a) sand bed; and (b) a gravel bed. The disc is deployed at mid-depth of the logarithmic shear flow

Figure 12: (a) Maximum power coefficient Cp and (b) corresponding α2 for different blockage ratios B and non-dimensional

strip positions zd/zdmax, at Froude number Fr = 0.1 and logarithmic velocity profile d50 = 1 mm. The disc is deployed at

different elevations in the logarithmic shear flow for varing blockage ratio
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Figure 12 shows contours of maximum power coefficient Cp and corresponding α2 with respect to blockage420

ratio B and non-dimensional strip position zd/zdmax, at Fr = 0.1 and for a logarithmic velocity profile

corresponding to d50 = 1 mm. Figure 12(a) indicates that a higher peak power coefficient is still achieved as

the strip is moved downwards and has a higher blockage ratio, as in the asymmetric power law shear flow,

and the efficiency exhibits greater dependency on blockage ratio.

3.4. Basin efficiency for 2D cases425

We now take into account the basin efficiency for asymmetric power law velocity profiles of different

shape (n = 0, 1/5, 1/7, 1). Figure 13 shows that basin efficiency decreases monotonically as the thrust

coefficient Ct increases, for strips located at mid-depth. In general, an increase in shear (larger n) results

in lower basin efficiency. However, an inverse trend can be observed when the strip is weak (large α2 or low

Ct). This can be explained by considering the recovery process in the wake. As there is no momentum loss430

between Section 4 and Section 5, the energy loss between the two sections is determined by the uniformity

of the velocity profiles at the two sections. For uniform flow cases, velocity recovery tends to increase the

uniformity of the profile, leading to greater energy loss between the two sections. For non-uniform flow

cases, however, changes in velocity may result in more non-uniform profiles and decreased energy loss. Such

reduction in energy loss may further increase the basin efficiency. Figure 13 (a) shows the changes in basin435

efficiency η as the power coefficient Cp varies. All the lines (n = 0, 1/7, 1/5, 1) in the figure have steep slopes

near the maximum value of power coefficient, implying that the basin efficiency (environmental effect) can

be reduced by decreasing the power coefficient. For example, in 1/7 power law shear flow, a 10% decrease

in power coefficient can cause a 15% increase in basin efficiency.
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Figure 13: Basin efficiency η as a function of (a) power coefficient Cp and (b) thrust coefficient Ct at Froude number Fr = 0.1,

blockage ratio B = 1/6, and asymmetric power law profiles of different shapes (n = 0, 1/7, 1/5, 1), with strips located at

mid-depth of the power-law shear flows

For logarithmic velocity profiles (d50 = 1 mm, 64 mm), similar relationships can be obtained between440
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basin efficiency η, thrust coefficient Ct and power coefficient Cp, as shown in Figures 14. Again for strips

located at mid-depth, higher basin efficiency is achieved at smaller thrust coefficient Ct, and the basin

efficiency is sensitive to the value of the power coefficient.
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Figure 14: Basin efficiency η as a function of (a) power coefficient Cp and (b) thrust coefficient Ct at Froude number Fr = 0.1,

blockage ratio B = 1/6, and logarithmic profiles of different shapes (d50 = 1 mm, 64 mm), with strips located at mid-depth of

the logarithmic shear flow

3.5. 3D Power law shear flow with vertical shear

For arrays where the turbines are not very densely deployed, as in most designs to date, the inflow to445

each isolated turbines is likely to be a vertically-dominated shear flow, similar to the case of an isolated

turbine operated in open water. For three-dimensional shear flow, the same procedure as for two dimensions

can be applied. Consider a three-dimensional velocity profile with vertical shear described by a power law

written as

u1(y, zb) = U(
zb

A1/w1
)n (82)

where y is the horizontal coordinate and is set to zero at the disc center. Elevation zb is zero at the bed450

and taken positive upwards. Thus the discharge in a micro flow tube confined by the two families of stream

surfaces ψψψ = (ψ, χ) is dψ(y, zb)dχ(y, zb) = u1(y, zb)dydzb. Taking the middle bottom point as zero reference,

and integrating over a finite area gives

ψ(y, zb)χ(y, zb) =

ˆ y

0

ˆ zb

0

u1(y, zb)dzbdy =
UA1y

w1(n+ 1)
(

zb
A1/w1

)n+1. (83)

Without loss of generality, we set χ = y, then ψ andψ2 can be solved as
ψ =

UA1

w1(n+ 1)
(

zb
A1/w1

)n+1

χ = y

(84)
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Representing y and zb in terms of ψ and χ using Equation 84 and substituting into Equation 82 gives455

u1(ψ, χ) = U1/(n+1)(
w1(n+ 1)ψ

A1
)n/(n+1). (85)

As with a 2D power law velocity profiles, the cross-sectional averaged velocity of a 3D vertical power law

velocity profile is

U = (n+ 1)U. (86)

Consider a round disc (zb − zd)2 + y2 = R2. Then, the function for ψt and χt used to represent the edges

of the core incoming flow tube is given by

χt = ±

√
α2R2 − ((

w1(n+ 1)

UA1
ψt)1/(n+1)A1/w1 − zd)2 (87)

where ψt ∈
[

UA1

w1(n+1) (
zd−D/2
A1/w1

)n+1, UA1

w1(n+1) (
zd+D/2
A1/w1

)n+1
]
. Functions used to represent the edges of the overall460

control volume are 

ψ1 = 0

ψ2 =
UA1

w1(n+ 1)

χ1 = −w1

2

χ2 =
w1

2

(88)

where ψ1 and ψ2 denote the intersection of the ψ stream surface family with Section 1 at the bed and water

surface. χ1 and χ2 denote the intersection of the χ stream surface family with Section 1 at the left and

right boundaries. Substitution of the above into Equations 29 to 30 enables calculation of α4 and β′4. The

performance of the discs is evaluated using Equations 33.465

Figure 15 shows the dependence of power coefficient Cp on α2 given by Equation 33 for an actuator disc

located at mid-depth in three-dimensional power law shear flows with vertical profiles of different shapes

(n = 0, 1/7, 1/5). The water depth is set to 6 times the disc diameter. The Froude number defined using

maximum velocity U is Fr = 0.1. As with the two-dimensional cases, the figures show that increasing shear470

causes the power coefficient to decrease. However, there are always lateral gaps between neighbour discs in

three-dimensional cases even when the actuator discs are densely deployed because of the round disc edges

(the case in Figure 15(a), where the gap between neighbour discs at axis height is S = 0); this results in

a lower power coefficient compared to that of 2D strips under the same depth conditions. For a given disc

at a specific location, the submergence ratio (depth to disc diameter D) is determined. Then the larger475

the gap between discs, the lower the power coefficient. For the cases shown in Figure 15(b), variations in

basin efficiency η with thrust coefficient Ct and power coefficient Cp are given in Figure 16. Trends in the

η lines are similar to those of their two-dimensional counterparts, with higher basin efficiency achieved at
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small thrust coefficient and either high or low values of power coefficient. Again, basin efficiency is sensitive

to the value of the power coefficient.480
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Figure 15: Variation in power coefficient Cp with α2 for 3D power law velocity profiles (n = 0, 1/7, 1/5), at Fr = 0.1, Depth =

6D (rotor diameter) for: (a) S = 0; and (b) S = 4D. The disc is deployed at mid-depth of the power-law shear flow and the

rotor radius is 1/6 of the water depth
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Figure 16: Basin efficiency η as a function of (a) power coefficient Cp and (b) thrust coefficient Ct at Fr = 0.1, Depth = 6D, S

= 4D for 3D power law velocity profiles n = 0, 1/7, 1/5, the discs are located at mid-depth. The disc is deployed at mid-depth

of the power-law shear flow and the rotor radius is 1/6 of the water depth

To illustrate application of the model to realistic scenarios, case studies are conducted involving three-

dimensional shallow and deep channels. Figure 17 presents a schematic of the idealized turbine array layout

where the turbines are evenly deployed in a single row. The inflow is uniform horizontally with a 1/7 power

law distribution in the vertical direction. Characteristics of the channels and turbines are shown in table485

1, following Houlsby and Vogel (2016). The shallow channel has a depth of 30 m, a width of 600 m, and

carries a flow with depth-averaged velocity 3 m/s, representing Strangford Lough. The deep channel has a
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Figure 17: Turbine array layout: (a) plan view; (b) Vertical slice viewed from downstream. (D is turbine diameter, S is gap

between adjacent turbines)

depth of 50 m, a width of 10 km, and depth-averaged velocity of 2 m/s, representing the Pentland Firth.

Each turbine diameter is 20 m. As shown in table 1, vertical shear has slight effect on power, thrust, and

basin efficiency for turbines located at mid-depth. However, blockage, power, thrust, and basin efficiency490

are sensitive to horizontal distance between neighbouring turbines.

Tidal turbines must be deployed at an elevation such that sufficient clearance is provided above the

top rotor rims for submergence and below the bottom rotor rims for structural integrity. Thus for shallow

channels, the mid-depth (as with the cases in table 1) provides a sensible approximation to the level at495

which the turbines are likely to be located. However for deep channels, there are more choices. For example,

if the clearance distances are set to be 5 m both above and below the rotor in the deep channel cases, then

the turbine axis may be located anywhere between 15 m to 35 m above the sea bed. We therefore take 15,

25, and 35 m as representative axis heights for lower, medium, and upper turbine deployments respectively.

Table 2 presents comparisons of turbine power, thrust, and basin efficiency, all of which increase as the500

turbine location moves from the lower part to the upper part of the water column. For the single turbine

cases, a 60% increase in power and 15% increase in basin efficiency are achieved. Meanwhile, for the 500

turbine cases, the power and basin efficiency both increase by about 25%.
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Channel Type Feature
Number of turbines

1 10 30 100 500

Blockage 0.017 0.17 0.52 – –

Shallow Channel Power/turbine (MW) 2.6 3.8 17 – –

(uniform) Thrust/turbine (MN) 1.3 2.3 19 – –

Basin efficiency 0.65 0.55 0.28 – –

Shallow Channel Power/turbine (MW) 2.5 3.7 17 – –

(1/7 power law) Thrust/turbine (MN) 1.3 2.2 19 – –

Basin efficiency 0.62 0.57 0.29 – –

Shallow Channel Power/turbine (MW) 2.4 3.6 17 – –

(1/5 power law) Thrust/turbine (MN) 1.3 2.3 18 – –

Basin efficiency 0.62 0.52 0.30 – –

Blockage 0.00070 0.0070 0.021 0.070 0.349

Deep Channel Power/turbine (MW) 0.74 0.75 0.78 0.86 1.8

(uniform) Thrust/turbine (MN) 0.57 0.58 0.60 0.72 1.8

Basin efficiency 0.65 0.65 0.65 0.60 0.50

Deep Channel Power/turbine (MW) 0.76 0.77 0.79 0.88 1.8

(1/7 power law) Thrust/turbine (MN) 0.56 0.57 0.59 0.71 1.8

Basin efficiency 0.67 0.67 0.67 0.62 0.52

Deep Channel Power/turbine (MW) 0.75 0.76 0.78 0.87 1.8

(1/5 power law) Thrust/turbine (MN) 0.55 0.56 0.58 0.70 1.7

Basin efficiency 0.68 0.68 0.68 0.63 0.52

Table 1: Power, thrust, and basin efficiencies for different numbers of turbines located in three-dimensional shallow and deep

channels
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Channel Type Feature
Number of turbines

1 10 30 100 500

Blockage 0.00070 0.0070 0.021 0.070 0.349

Deep Channel Power/turbine (MW) 0.56 0.57 0.59 0.68 1.6

(lower) Thrust/turbine (MN) 0.45 0.46 0.52 0.59 1.8

Basin efficiency 0.62 0.62 0.58 0.57 0.43

Deep Channel Power/turbine (MW) 0.76 0.77 0.79 0.88 1.8

(medium) Thrust/turbine (MN) 0.56 0.57 0.59 0.71 1.8

Basin efficiency 0.67 0.67 0.67 0.62 0.52

Deep Channel Power/turbine (MW) 0.90 0.91 0.93 1.0 2.0

(upper) Thrust/turbine (MN) 0.64 0.64 0.66 0.79 1.8

Basin efficiency 0.71 0.71 0.71 0.65 0.54

Table 2: Power, thrust, and basin efficiencies of different numbers of turbines located at lower, middle, and upper elevations in

the water column of a three-dimensional deep channel

4. Discussion and conclusion

An analytical model based on LMADT has been proposed to estimate the power extracted by ideal-505

ized turbines in shear flow, allowing the combined effect of vertical shear and gravity on idealized turbine

performance to be investigated. The model is first established in three spatial dimensions under the assump-

tion that pressure recovers much faster than velocity. Then simplification is made by adopting a second

assumption of self-similar wake profiles. This assumption is applicable to actuator discs with uniform local

resistance, which is the case when the geometric blockage and shear are not excessive. Finally, the basin510

efficiency is determined by assuming the velocity profile far downstream of the turbines is similar to that of

the upstream flow.

First, the model demonstrations are conducted based on two- and three-dimensional cases with shear

in the vertical plane. A parameter study is conducted to show the effect of vertical shear and gravity on515

idealized turbine performance, where the profiles of upstream flow are described by power and logarithmic

laws. Analytical solutions indicate that: (i) for free surface flows, the gravity effect improves the perfor-

mance of actuator discs by creating a water level drop between the upstream and downstream ends of the

strip, which in turn provides an extra source of energy; (ii) the shear effect can either improve or diminish

disc performance by inducing upstream and bypass flow velocities that are different to each other. Actuator520

discs located at high velocity regions have lower power coefficients, whereas turbines located at low velocity

regions have higher power coefficients; (iii) basin efficiency is sensitive to power coefficient, implying that
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Figure 18: Profiles of local resistance coefficient k along the discs for asymmetric power law velocity profile with n = 1/7 , at

blockage ratio B = 1/6 and Froude numbers Fr = 0.1, 0.2, 0.3, the discs are deployed at (a) mid-depth; and (b) bottom

environmental impact can be significantly reduced by decreasing the power coefficient. Within the range of

the present study, an approximately 15% increase in basin efficiency can be achieved by setting the actuator

discs to operate at 90% of the peak power coefficient; and (iv) within the range of the three-dimensional cases525

considered, reduction in horizontal spacing between adjacent idealized turbines suppresses vertical shear for

turbines located at mid-depth. However, for deep channels with specific numbers of turbines, vertical shear

is important regarding power extracted, structure load, and basin efficiency. The increase in power can

reach 60% if the turbine location is altered from the lower to the upper part of the water column, and the

associated increase in basin efficiency can be as high as 25%.530

As mentioned in §2 , specific resistance distributions (Equation 41 - Equation 43) are used to achieve

self-similar core wake profiles, appropriate for the cases studied. To provide more details of the disc prop-

erties, the local resistance coefficient k for the asymmetric power law cases in Figure 10 are calculated, and

shown in Figure 18 (a). It can be seen that k is almost uniform along the disc, although slightly inclined.535

When a2 is close to 1 (i.e. weak disc), the resistance profiles for discs in flows at different Froude numbers

(indicated using different colours) overlap, whereas for smaller a2 values the lines separate out from each

other. Flows at larger Froude number require discs with larger resistance. As the discs are moved from

mid-depth to the bottom, the resistance k increases without too much change to profile shape. Hence, for

1/7 power law shear flows and discs with mild blockages, the assumption of self-similar core wake profiles is540

compatible with (commonly utilised) uniform resistance discs.

In reality, some energy is continuously dissipated as heat even in the absence of discs. This phenomenon

is associated with: (1) the water head difference between channel ends which drives flow acceleration; and (2)
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Figure 19: Schematic of forces applied on and velocity variations at (a) an ideal foil section; and (b) an actual foil section

bed resistance causing flow deceleration. To maintain balance between these two effects, some mechanical545

energy of the water is consumed through flow shear. The inclusion of artificial energy extraction alters the

natural dissipation process, adding to the total dissipation due to wake mixing. By ignoring energy loss due

to natural processes, the basin efficiency herein is simply a first-order approximation.

The most significant difference between the scenarios of an actuator disc (i.e. idealized turbine) and550

an actual turbine arises from the rotation of the blades. It is possible to compare the two scenarios using

classical actuator disc theory and rotating blade momentum theory. From a foil-scale perspective, the foil

has to move in a circular orbit in order to extract energy from the fluid. Two key points should be noted

concerning this process. Firstly, rotation of the blades causes the wake to rotate. When the flow passes

through the rotor, the energy flux within a steam tube is diverted and partially dissipated before it returns555

to the x direction. This phenomenon can be viewed as an additional energy loss from the water but is

treated as part of the energy extracted by the disc in the actuator disc framework. Secondly, an ideal foil

does not exist and so the foil drag coefficient is never zero in moving water. This induces a spurious drag

force FD (as shown in Figure 19 (b))) and causes additional energy loss from the water in a similar way to

a submerged structure; this is inherently considered as part of energy extracted by the disc in the actuator560

disc framework. To sum up, only when the turbine blades rotate rapidly and the drag coefficient for blade

sections is small, do actuator disc and rotors become equivalent.

We examine the difference between actuator disc and a rotor by depicting the power coefficient ratio

(power coefficient normalized by Betz limit) for a rotor with non-ideal foil sections (Figure 20), where K565

indicates the importance of lift FL with respect to the resultant force FFoil. When the foil drag FD us

not equal to zero, the resultant force FFoil is no longer aligned with FL and so is not perpendicular to the
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relative incident velocity Urel (as shown in Figure 19). In this case, the angle (Kφ) between the velocity

variation ∆U and incident velocity U0 is smaller than that (φ) between the relative incident velocity Urel

and rotor plane. K is defined as the ratio between the two angles. As expected, when K=1 (i.e. foil drag570

can be ignored), the optimum power coefficient approaches the Betz limit as the tip speed ratio λ increases.

Meanwhile for cases where K < 1, (note: foil drag becomes more important as K decreases), the optimum

power coefficient approaches a limit lower than the Betz limit. For the majority of actual turbines, λ is

likely to be larger than 4, which corresponds to the mild-sloped portions of the curves. This implies that foil

drag is mainly responsible for the difference between optimum power coefficient of an actuator disc and an575

actual rotor. From the foregoing discussion, we observe that actuator disc theory regards energy loss from

the rotating wake and foil drag as contributing to energy extracted by the disc. This means actuator disc

theory may overestimate energy coefficients for turbines and so provides an upper limit for energy assessment.

Figure 20: Comparison between power coefficient of an actuator disc (idealized turbine) and a real turbine (K indicates the

relative importance of lift FL to resultant force FFoil)

The proposed model provides an efficient method to investigate submerged structures in free surface580

shear flows. Beside considering the performance of single row water turbines, the model can also be used to

study the loads acting on offshore structures.
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