527 research outputs found

    Decentralized Constraint Satisfaction

    Get PDF
    We show that several important resource allocation problems in wireless networks fit within the common framework of Constraint Satisfaction Problems (CSPs). Inspired by the requirements of these applications, where variables are located at distinct network devices that may not be able to communicate but may interfere, we define natural criteria that a CSP solver must possess in order to be practical. We term these algorithms decentralized CSP solvers. The best known CSP solvers were designed for centralized problems and do not meet these criteria. We introduce a stochastic decentralized CSP solver and prove that it will find a solution in almost surely finite time, should one exist, also showing it has many practically desirable properties. We benchmark the algorithm's performance on a well-studied class of CSPs, random k-SAT, illustrating that the time the algorithm takes to find a satisfying assignment is competitive with stochastic centralized solvers on problems with order a thousand variables despite its decentralized nature. We demonstrate the solver's practical utility for the problems that motivated its introduction by using it to find a non-interfering channel allocation for a network formed from data from downtown Manhattan

    Matchings on infinite graphs

    Full text link
    Elek and Lippner (2010) showed that the convergence of a sequence of bounded-degree graphs implies the existence of a limit for the proportion of vertices covered by a maximum matching. We provide a characterization of the limiting parameter via a local recursion defined directly on the limit of the graph sequence. Interestingly, the recursion may admit multiple solutions, implying non-trivial long-range dependencies between the covered vertices. We overcome this lack of correlation decay by introducing a perturbative parameter (temperature), which we let progressively go to zero. This allows us to uniquely identify the correct solution. In the important case where the graph limit is a unimodular Galton-Watson tree, the recursion simplifies into a distributional equation that can be solved explicitly, leading to a new asymptotic formula that considerably extends the well-known one by Karp and Sipser for Erd\"os-R\'enyi random graphs.Comment: 23 page

    Spectrum of non-Hermitian heavy tailed random matrices

    Get PDF
    Let (X_{jk})_{j,k>=1} be i.i.d. complex random variables such that |X_{jk}| is in the domain of attraction of an alpha-stable law, with 0< alpha <2. Our main result is a heavy tailed counterpart of Girko's circular law. Namely, under some additional smoothness assumptions on the law of X_{jk}, we prove that there exists a deterministic sequence a_n ~ n^{1/alpha} and a probability measure mu_alpha on C depending only on alpha such that with probability one, the empirical distribution of the eigenvalues of the rescaled matrix a_n^{-1} (X_{jk})_{1<=j,k<=n} converges weakly to mu_alpha as n tends to infinity. Our approach combines Aldous & Steele's objective method with Girko's Hermitization using logarithmic potentials. The underlying limiting object is defined on a bipartized version of Aldous' Poisson Weighted Infinite Tree. Recursive relations on the tree provide some properties of mu_alpha. In contrast with the Hermitian case, we find that mu_alpha is not heavy tailed.Comment: Expanded version of a paper published in Communications in Mathematical Physics 307, 513-560 (2011

    Parentage of grapevine rootstock ‘Fercal’ finally elucidated

    Get PDF
    Using a set of 20 microsatellite markers, ‘B.C. n°1B’ (mother) and ‘31 Richter’ (father) were demonstrated to be the true parents of ‘Fercal’ rootstock. ‘333 Ecole de Montpellier’ was definitively excluded as the putative father. ‘B.C. n°1A’ and ‘B.C. n°1B’ were shown to be distinct genotypes. ‘Ugni blanc’, and not ‘Colombard’, was discovered to be the Vitis vinifera father of ‘B.C. n°1B’.

    Stability Analysis of Frame Slotted Aloha Protocol

    Full text link
    Frame Slotted Aloha (FSA) protocol has been widely applied in Radio Frequency Identification (RFID) systems as the de facto standard in tag identification. However, very limited work has been done on the stability of FSA despite its fundamental importance both on the theoretical characterisation of FSA performance and its effective operation in practical systems. In order to bridge this gap, we devote this paper to investigating the stability properties of FSA by focusing on two physical layer models of practical importance, the models with single packet reception and multipacket reception capabilities. Technically, we model the FSA system backlog as a Markov chain with its states being backlog size at the beginning of each frame. The objective is to analyze the ergodicity of the Markov chain and demonstrate its properties in different regions, particularly the instability region. By employing drift analysis, we obtain the closed-form conditions for the stability of FSA and show that the stability region is maximised when the frame length equals the backlog size in the single packet reception model and when the ratio of the backlog size to frame length equals in order of magnitude the maximum multipacket reception capacity in the multipacket reception model. Furthermore, to characterise system behavior in the instability region, we mathematically demonstrate the existence of transience of the backlog Markov chain.Comment: 14 pages, submitted to IEEE Transaction on Information Theor

    CUTOFF AT THE " ENTROPIC TIME " FOR SPARSE MARKOV CHAINS

    Get PDF
    International audienceWe study convergence to equilibrium for a large class of Markov chains in random environment. The chains are sparse in the sense that in every row of the transition matrix P the mass is essentially concentrated on few entries. Moreover, the random environment is such that rows of P are independent and such that the entries are exchangeable within each row. This includes various models of random walks on sparse random directed graphs. The models are generally non reversible and the equilibrium distribution is itself unknown. In this general setting we establish the cutoff phenomenon for the total variation distance to equilibrium, with mixing time given by the logarithm of the number of states times the inverse of the average row entropy of P. As an application, we consider the case where the rows of P are i.i.d. random vectors in the domain of attraction of a Poisson-Dirichlet law with index α ∈ (0, 1). Our main results are based on a detailed analysis of the weight of the trajectory followed by the walker. This approach offers an interpretation of cutoff as an instance of the concentration of measure phenomenon

    Spectral density of random graphs with topological constraints

    Full text link
    The spectral density of random graphs with topological constraints is analysed using the replica method. We consider graph ensembles featuring generalised degree-degree correlations, as well as those with a community structure. In each case an exact solution is found for the spectral density in the form of consistency equations depending on the statistical properties of the graph ensemble in question. We highlight the effect of these topological constraints on the resulting spectral density.Comment: 24 pages, 6 figure
    • 

    corecore