236 research outputs found

    Reduced cingulate gyrus volume in Cavalier King Charles Spaniels with syringomyelia and neuropathic pain revealed by voxel-based morphometry: a pilot study

    Get PDF
    Objective: Pathomorphological alterations of the central nervous system in dogs, such as syringomyelia and Chiari-like malformation, can cause cranial and cervical hyperesthesia and neuropathic pain. The long-term activity of the pain network can induce functional alteration and eventually even morphological changes in the pain network. This may happen especially in the prefrontal and cingulate cortex, where atrophy of the gray matter (GM) was observed in humans with chronic pain, irrespective of the nature of the pain syndrome. We tested the hypothesis that Cavalier King Charles Spaniels (CKCS) with Chiari-like malformation and associated syringomyelia (SM) and pain show cerebral morphological differences compared to animals without signs of syringomyelia and pain. Methods: Volumetric datasets of 28 different brain structures were analyzed in a retrospective manner, including voxel-based morphometry, using magnetic resonance imaging data obtained from 41 dogs. Results: Volumetric analyses revealed a decrease in GM volumes in the cingulate gyrus (CG) in CKCS with SM and chronic pain when normalized to brain volume. This finding was supported by voxel-based morphometry, which showed a cluster of significance within the CG. Conclusion: GM atrophy in the CG is associated with chronic pain and thus may serve as an objective readout parameter for the diagnosis or treatment of canine pain syndromes

    Reduced cingulate gyrus volume in Cavalier King Charles Spaniels with syringomyelia and neuropathic pain revealed by voxel-based morphometry : a pilot study

    Get PDF
    Objective: Pathomorphological alterations of the central nervous system in dogs, such as syringomyelia and Chiari-like malformation, can cause cranial and cervical hyperesthesia and neuropathic pain. The long-term activity of the pain network can induce functional alteration and eventually even morphological changes in the pain network. This may happen especially in the prefrontal and cingulate cortex, where atrophy of the gray matter (GM) was observed in humans with chronic pain, irrespective of the nature of the pain syndrome. We tested the hypothesis that Cavalier King Charles Spaniels (CKCS) with Chiari-like malformation and associated syringomyelia (SM) and pain show cerebral morphological differences compared to animals without signs of syringomyelia and pain. Methods: Volumetric datasets of 28 different brain structures were analyzed in a retrospective manner, including voxel-based morphometry, using magnetic resonance imaging data obtained from 41 dogs. Results: Volumetric analyses revealed a decrease in GM volumes in the cingulate gyrus (CG) in CKCS with SM and chronic pain when normalized to brain volume. This finding was supported by voxel-based morphometry, which showed a cluster of significance within the CG. Conclusion: GM atrophy in the CG is associated with chronic pain and thus may serve as an objective readout parameter for the diagnosis or treatment of canine pain syndromes

    Infarct evolution in a large animal model of middle cerebral artery occlusion

    Get PDF
    Mechanical thrombectomy for the treatment of ischemic stroke shows high rates of recanalization; however, some patients still have a poor clinical outcome. A proposed reason for this relates to the fact that the ischemic infarct growth differs significantly between patients. While some patients demonstrate rapid evolution of their infarct core (fast evolvers), others have substantial potentially salvageable penumbral tissue even hours after initial vessel occlusion (slow evolvers). We show that the dog middle cerebral artery occlusion model recapitulates this key aspect of human stroke rendering it a highly desirable model to develop novel multimodal treatments to improve clinical outcomes. Moreover, this model is well suited to develop novel image analysis techniques that allow for improved lesion evolution prediction; we provide proof-of-concept that MRI perfusion-based time-to-peak maps can be utilized to predict the rate of infarct growth as validated by apparent diffusion coefficient-derived lesion maps allowing reliable classification of dogs into fast versus slow evolvers enabling more robust study design for interventional research

    Neuronal hypoxia in vitro: Investigation of therapeutic principles of HUCB-MNC and CD133+ stem cells

    Get PDF
    Background The therapeutic capacity of human umbilical cord blood mononuclear cells (HUCB-MNC) and stem cells derived thereof is documented in animal models of focal cerebral ischemia, while mechanisms behind the reduction of lesion size and the observed improvement of behavioral skills still remain poorly understood. Methods A human in vitro model of neuronal hypoxia was used to address the impact of total HUCB-MNC (tMNC), a stem cell enriched fraction (CD133+, 97.38% CD133-positive cells) and a stem cell depleted fraction (CD133-, 0.06% CD133-positive cells) of HUCB-MNC by either direct or indirect co-cultivation with post-hypoxic neuronal cells (differentiated SH-SY5Y). Over three days, development of apoptosis and necrosis of neuronal cells, chemotaxis of MNC and production of chemokines (CCL2, CCL3, CCL5, CXCL8, CXCL9) and growth factors (G-CSF, GM-CSF, VEGF, bFGF) were analyzed using fluorescence microscopy, FACS and cytometric bead array. Results tMNC, CD133+ and surprisingly CD133- reduced neuronal apoptosis in direct co-cultivations significantly to levels in the range of normoxic controls (7% ± 3%). Untreated post-hypoxic control cultures showed apoptosis rates of 85% ± 11%. tMNC actively migrated towards injured neuronal cells. Both co-cultivation types using tMNC or CD133- reduced apoptosis comparably. CD133- produced high concentrations of CCL3 and neuroprotective G-CSF within indirect co-cultures. Soluble factors produced by CD133+ cells were not detectable in direct co-cultures. Conclusion Our data show that heterogeneous tMNC and even CD133-depleted fractions have the capability not only to reduce apoptosis in neuronal cells but also to trigger the retaining of neuronal phenotypes

    Clinical practice guidelines of remote ischemic conditioning for the management of cerebrovascular diseases

    Get PDF
    Remote ischemic conditioning (RIC) using transient limb ischemia and reperfusion has been shown in small clinical studies to reduce myocardial injury and infarction in cardiac patients, although larger clinical outcome studies have been neutral. Experimental and emerging clinical studies have also reported beneficial effects of limb RIC in a number of different settings of cerebrovascular disease including stroke (ischemic and hemorrhagic), carotid artery stenosis, intracranial artery stenosis, aneurysms, small vessel disease, and vascular cognitive impairment. Although limb RIC has many advantages, in that it is non-invasive, easy to administer, relatively innocuous, cost-effective, has few or no contraindications, and may be deployed under various circumstances (e.g., home, ambulance, and hospital), several questions remain regarding its clinical application for cerebrovascular disease. Therefore, in this document, we aim to provide practicing clinicians with a coherent synthesis of the latest scientific evidence, and we propose several recommendations to help facilitate the clinical application of limb RIC for the management of cerebrovascular disease

    Recent progress in translational research on neurovascular and neurodegenerative disorders

    Get PDF
    The already established and widely used intravenous application of recombinant tissue plasminogen activator as a re-opening strategy for acute vessel occlusion in ischemic stroke was recently added by mechanical thrombectomy, representing a fundamental progress in evidence-based medicine to improve the patient’s outcome. This has been paralleled by a swift increase in our understanding of pathomechanisms underlying many neurovascular diseases and most prevalent forms of dementia. Taken together, these current advances offer the potential to overcome almost two decades of marginally successful translational research on stroke and dementia, thereby spurring the entire field of translational neuroscience. Moreover, they may also pave the way for the renaissance of classical neuroprotective paradigms. This review reports and summarizes some of the most interesting and promising recent achievements in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given on translational stories ranging from fundamental research on neurode- and -regeneration to late stage translational or early stage clinical investigations

    Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease.

    Get PDF
    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI's potential as surrogate marker for SVD
    corecore