233 research outputs found

    The Relationship Between Compensation, Motivation, And Earnings Management

    Get PDF
    Regulators and investors remain concerned with earnings management and its effect on the reliability of accounting information. Agency literature suggests that a lack of compensation incentives (i.e., bonus payments) can decrease—but not completely eliminate--earnings management behavior, while theory from psychology suggests that individuals may be motivated to manage earnings, regardless of compensation. Consequently, we examine how compensation incentives and motivation (intrinsic versus extrinsic) affect earnings management behavior. We hypothesize and find that when compensation is linked to firm performance, managers make income increasing (decreasing) decisions when current earnings are below (above) analysts’ forecasts. We find that in the absence of compensation incentives, managers make earnings increasing decisions when current earnings are below analysts’ forecasts, but they do not make earnings decreasing decisions when current earnings are above analysts’ forecasts. Finally and most importantly we show that managers who possess strong extrinsic motivation are more likely to manage earnings upwards to reach targets – in the absence of compensation – possibly because it helps satisfy their competitive spirit and need for recognition. However when current earnings are above the target (analysts’ forecasts), managers are not compelled to manage earnings as this drive has already been satisfied

    Platinum Cyclooctadiene Complexes with Activity against Gram-positive Bacteria

    Get PDF
    Antimicrobial resistance is a looming health crisis, and it is becoming increasingly clear that organic chemistry alone is not sufficient to continue to provide the world with novel and effective antibiotics. Recently there has been an increased number of reports describing promising antimicrobial properties of metal-containing compounds. Platinum complexes are well known in the field of inorganic medicinal chemistry for their tremendous success as anticancer agents. Here we report on the promising antibacterial properties of platinum cyclooctadiene (COD) complexes. Amongst the 15 compounds studied, the simplest compounds Pt(COD)X2_{2} (X=Cl, I, Pt1 and Pt2) showed excellent activity against a panel of Gram-positive bacteria including vancomycin and methicillin resistant Staphylococcus aureus. Additionally, the lead compounds show no toxicity against mammalian cells or haemolytic properties at the highest tested concentrations, indicating that the observed activity is specific against bacteria. Finally, these compounds showed no toxicity against Galleria mellonella at the highest measured concentrations. However, preliminary efficacy studies in the same animal model found no decrease in bacterial load upon treatment with Pt1 and Pt2. Serum exchange studies suggest that these compounds exhibit high serum binding which reduces their bioavailability in vivo, mandating alternative administration routes such as e. g. topical application

    Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity

    Get PDF
    S31-201 (NSC 74859) is a chemical probe inhibitor of Stat3 activity, which was identified from the National Cancer Institute chemical libraries by using structure-based virtual screening with a computer model of the Stat3 SH2 domain bound to its Stat3 phosphotyrosine peptide derived from the x-ray crystal structure of the Stat3 beta homodimer. S31-201 inhibits Stat3-Stat3 complex formation and Stat3 DNA-binding and transcriptional activities. Furthermore, S31-201 inhibits growth and induces apoptosis preferentially in tumor cells that contain persistently activated Stat3. Constitutively climerized and active Stat3C and Stat3 SH2 domain rescue tumor cells from S31-201-induced apoptosis. Finally, S31-201 inhibits the expression of the Stat3-regulated genes encoding cyclin D1, BcI-xL, and survivin and inhibits the growth of human breast tumors in vivo. These findings strongly suggest that the antitumor activity of S31-201 is mediated in part through inhibition of aberrant Stat3 activation and provide the proof-of-concept for the potential clinical use of Stat3 inhibitors such as S31-201 in tumors harboring aberrant Stat3

    A new antibiotic with potent activity targets MscL

    Get PDF
    The growing problem of antibiotic-resistant bacteria is a major threat to human health. Paradoxically, new antibiotic discovery is declining, with most of the recently approved antibiotics corresponding to new uses for old antibiotics or structurally similar derivatives of known antibiotics. We used an in silico approach to design a new class of nontoxic antimicrobials for the bacteria-specific mechanosensitive ion channel of large conductance, MscL. One antimicrobial of this class, compound 10, is effective against methicillin-resistant Staphylococcus aureus with no cytotoxicity in human cell lines at the therapeutic concentrations. As predicted from in silico modeling, we show that the mechanism of action of compound 10 is at least partly dependent on interactions with MscL. Moreover we show that compound 10 cured a methicillin-resistant S. aureus infection in the model nematode Caenorhabditis elegans. Our work shows that compound 10, and other drugs that target MscL, are potentially important therapeutics against antibiotic-resistant bacterial infections.Irene Iscla, Robin Wray, Paul Blount, Jonah Larkins-Ford, Annie L Conery, Frederick M Ausubel, Soumya Ramu, Angela Kavanagh, Johnny X Huang, Mark A Blaskovich, Matthew A Cooper, Andres Obregon-Henao, Ian Orme, Edwin S Tjandra, Uwe H Stroeher, Melissa H Brown, Cindy Macardle, Nick van Holst, Chee Ling Tong, Ashley D Slattery, Christopher T Gibson, Colin L Raston and Ramiz A Boulo

    CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this record. The Ff family of filamentous bacteriophages infect gram-negative bacteria, but do not cause lysis of their host cell. Instead, new virions are extruded via the phage-encoded pIV protein, which has homology with bacterial secretins. Here, we determine the structure of pIV from the f1 filamentous bacteriophage at 2.7 Å resolution by cryo-electron microscopy, the first near-atomic structure of a phage secretin. Fifteen f1 pIV subunits assemble to form a gated channel in the bacterial outer membrane, with associated soluble domains projecting into the periplasm. We model channel opening and propose a mechanism for phage egress. By single-cell microfluidics experiments, we demonstrate the potential for secretins such as pIV to be used as adjuvants to increase the uptake and efficacy of antibiotics in bacteria. Finally, we compare the f1 pIV structure to its homologues to reveal similarities and differences between phage and bacterial secretins.Wellcome TrustBiotechnology and Biological Sciences Research Council (BBSRC)Medical Research Council (MRC)Gordon and Betty Moore FoundationEuropean Research Council (ERC)Biotechnology and Biological Sciences Research CouncilAustralian Postgraduate Award (APA)IMB Research Advancement Awar

    Correction: Metal complexes as a promising source for new antibiotics

    Get PDF
    Correction for ‘Metal complexes as a promising source for new antibiotics’ by Angelo Frei et al., Chem. Sci., 2020, 11, 2627–2639

    Metal complexes as a promising source for new antibiotics

    Get PDF
    There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance

    Ras C AAX Peptidomimetic FTI-277 Selectively Blocks Oncogenic Ras Signaling by Inducing Cytoplasmic Accumulation of Inactive Ras-Raf Complexes

    Get PDF
    Ras-induced malignant transformation requires Ras farnesylation, a lipid posttranslational modification catalyzed by farnesyltransferase (FTase). Inhibitors of this enzyme have been shown to block Ras-dependent transformation, but the mechanism by which this occurs remains largely unknown. We have designed FTI-276, a peptide mimetic of the COOH-terminal Cys-Val-Ile-Met of K-Ras4B that inhibited potently FTase in vitro (IC50 = 500 pM) and was highly selective for FTase over geranylgeranyltransferase I (GGTase I) (IC50 = 50 nM). FTI-277, the methyl ester derivative of FTI-276, was extremely potent (IC50 = 100 nM) at inhibiting H-Ras, but not the geranylgeranylated Rap1A processing in whole cells. Treatment of H-Ras oncogene-transformed NIH 3T3 cells with FTI-277 blocked recruitment to the plasma membrane and subsequent activation of the serine/threonine kinase c-Raf-1 in cells transformed by farnesylated Ras (H-RasF), but not geranylgeranylated, Ras (H-RasGG). FTI-277 induced accumulation of cytoplasmic non-farnesylated H-Ras that was able to bind Raf and form cytoplasmic Ras/Raf complexes in which Raf kinase was not activated. Furthermore, FTI-277 blocked constitutive activation of mitogen-activated protein kinase (MAPK) in H-RasF, but not H-RasGG, or Raf-transformed cells. FTI-277 also inhibited oncogenic K-Ras4B processing and constitutive activation of MAPK, but the concentrations required were 100-fold higher than those needed for H-Ras inhibition. The results demonstrate that FTI-277 blocks Ras oncogenic signaling by accumulating inactive Ras/Raf complexes in the cytoplasm, hence preventing constitutive activation of the MAPK cascade
    • 

    corecore