504 research outputs found

    Temperature influence on the carbon isotopic composition of Orbulina universa and Globigerina bulloides (planktonic foraminifera)

    Get PDF
    Laboratory experiments with the planktonic foraminifera Orbulina universa (symbiotic) and Globigerina bulloides (nonsymbiotic) were used to examine the effects of temperature, irradiance (symbiont photosynthesis), [CO32-], [HPO42-], and ontogeny on shell d13C values. In ambient seawater ([CO32-] = 171 mmol kg-1), the d13C of O. universa shells grown under low light (LL) levels is insensitive to temperature and records the d13C value of seawater TCO2. In contrast, the d13C of high light (HL) shells increases ~0.4‰ across 15-25°C (+0.050‰/°C). This suggests that the d13C enrichment due to symbiont photosynthetic activity is temperature-dependent. A comparison of HL O. universa grown in elevated [CO32-] seawater with ambient specimens shows that temperature does not affect the slope of the d13C/[CO32-] relationship previously described [Spero et al., 1997]. The d13C of G. bulloides shells decreases across the 15-24°C temperature range and d13C:temperature slopes decrease with increasing shell size (-0.13, -0.10, and -0.09‰/°C in 11- 12-, and 13-chambered shells, respectively). The pattern of lower d13C values at higher temperatures likely results from the incorporation of more respired CO2 into the shell at higher metabolic rates. The d13C of HL O. universa increases with increased seawater [HPO42-]

    Biomineralization in perforate foraminifera

    Get PDF
    In this paper, we review the current understanding of biomineralization in perforate foraminifera. Ideas on the mechanisms responsible for the flux of Ca2 + and inorganic carbon from seawater into the test were originally based on light and electron microscopic observations of calcifying foraminifera. From the 1980s onward, tracer experiments, fluorescent microscopy and high-resolution test geochemical analysis have added to existing calcification models. Despite recent insights, no general consensus on the physiological basis of foraminiferal biomineralization exists. Current models include seawater vacuolization, transmembrane ion transport, involvement of organic matrices and/or pH regulation, although the magnitude of these controls remain to be quantified. Disagreement between currently available models may be caused by the use of different foraminiferal species as subject for biomineralization experiments and/or lack of a more systematic approach to study (dis)similarities between taxa. In order to understand foraminiferal controls on element incorporation and isotope fractionation, and thereby improve the value of foraminifera as paleoceanographic proxies, it is necessary to identify key processes in foraminiferal biomineralization and formulate hypotheses regarding the involved physiological pathways to provide directions for future research

    The influence of a nonuniform rf field on the ion trajectories in an omegatron I

    Get PDF
    The quadrupole field component of a nonuniform rf field causes an effect which improves the resolution and is called rf drift-off. This effect is mathematically analysed. Some experimental results are shown which are in good agreement with the theory

    The effect of temperature and salinity on the stable hydrogen isotopic composition of long chain alkenones produced by <i>Emiliania huxleyi</i> and <i>Gephyrocapsa oceanica</i>

    No full text
    International audienceTwo haptophyte algae, Emiliania huxleyi and Gephyrocapsa oceanica, were cultured at different temperatures and salinities to investigate the impact of these factors on the hydrogen isotopic composition of long chain alkenones synthesized by these algae. Results showed that alkenones synthesized by G. oceanica were on average depleted in D by 30 per mil compared to those of E. huxleyi when grown under similar conditions. The fractionation factor, ?alkenones-H2O, ranged from 0.760 to 0.815 for E. huxleyi and from 0.741 to 0.788 for G. oceanica. There was no significant correlation of ?alkenones-H2O with temperature but a positive linear correlation was observed between ?alkenones-H2O and salinity with ~3 per mil change in fractionation per salinity unit. This suggests that salinity can have a substantial impact on the stable hydrogen isotopic composition of long chain alkenones in natural environments and, vice versa, that ?D can possibly be used as a proxy to estimate paleosalinity

    The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by <I>Emiliania huxleyi</I> and <I>Gephyrocapsa oceanica</I>

    No full text
    International audienceTwo haptophyte algae, Emiliania huxleyi and Gephyrocapsa oceanica, were cultured at different temperatures and salinities to investigate the impact of these factors on the hydrogen isotopic composition of long chain alkenones synthesized by these algae. Results showed that alkenones synthesized by G. oceanica were on average depleted in D by 30 compared to those of E. huxleyi when grown under similar temperature and salinity conditions. The fractionation factor, ?alkenones-H2O, ranged from 0.760 to 0.815 for E. huxleyi and from 0.741 to 0.788 for G. oceanica. There was no significant correlation of ?alkenones-H2O with temperature but a positive linear correlation was observed between ?alkenones-H2O and salinity with ~3 change in fractionation per salinity unit and a negative correlation between ?alkenones-H2O and growth rate. This suggests that both salinity and growth rate can have a substantial impact on the stable hydrogen isotopic composition of long chain alkenones in natural environments

    Inbreeding depression due to recent and ancient inbreeding in Dutch Holstein–Friesian dairy cattle

    Get PDF
    International audienceBackground : Inbreeding decreases animal performance (inbreeding depression), but not all inbreeding is expected to be equally harmful. Recent inbreeding is expected to be more harmful than ancient inbreeding, because selection decreases the frequency of deleterious alleles over time. Selection efficiency is increased by inbreeding, a process called purging. Our objective was to investigate effects of recent and ancient inbreeding on yield, fertility and udder health traits in Dutch Holstein–Friesian cows.Methods : In total, 38,792 first-parity cows were included. Pedigree inbreeding ( FPED ) was computed and 75 k geno-type data were used to compute genomic inbreeding, among others based on regions of homozygosity (ROH) in the genome ( FROH).Results : Inbreeding depression was observed, e.g. a 1% increase in FROH was associated with a 36.3 kg (SE = 2.4) decrease in 305-day milk yield, a 0.48 day (SE =0.15) increase in calving interval and a 0.86 unit (SE =0.28) increase in somatic cell score for day 150 through to 400. These effects equalled −0.45, 0.12 and 0.05% of the trait means, respec-tively. When FPED was split into generation-based components, inbreeding on recent generations was more harmful than inbreeding on more distant generations for yield traits. When FPED was split into new and ancestral components, based on whether alleles were identical-by-descent for the first time or not, new inbreeding was more harmful than ancestral inbreeding, especially for yield traits. For example, a 1% increase in new inbreeding was associated with a 2.42 kg (SE =0.41) decrease in 305-day fat yield, compared to a 0.03 kg (SE =0.71) increase for ancestral inbreeding. There were no clear differences between effects of long ROH (recent inbreeding) and short ROH (ancient inbreeding).Conclusions : Inbreeding depression was observed for yield, fertility and udder health traits. For yield traits and based on pedigree, inbreeding on recent generations was more harmful than inbreeding on distant generations and there was evidence of purging. Across all traits, long and short ROH contributed to inbreeding depression. In future work, inbreeding depression and purging should be assessed in more detail at the genomic level, using higher density information and genomic time series

    The coordination and distribution of B in foraminiferal calcite

    Get PDF
    The isotopic ratio and concentration of B in foraminiferal calcite appear to reflect the pH and bicarbonate concentration of seawater. The use of B as a chemical proxy tracer has the potential to transform our understanding of the global carbon cycle, and ocean acidification processes. However, discrepancies between the theory underpinning the B proxies, and mineralogical observations of B coordination in biomineral carbonates call the basis of these proxies into question. Here, we use synchrotron X-ray spectromicroscopy to show that B is hosted solely as trigonal BO3 in the calcite test of Amphistegina lessonii, and that B concentration exhibits banding at the micron length scale. In contrast to previous results, our observation of trigonal B agrees with the predictions of the theoretical mechanism behind B palaeoproxies. These data strengthen the use of B for producing palaeo-pH records. The observation of systematic B heterogeneity, however, highlights the complexity of foraminiferal biomineralisation, implying that B incorporation is modulated by biological or crystal growth processes.We would like to acknowledge David Nicol, Iris Buisman and Martin Walker for invaluable technical assistance, and James Bryson for his help with synchrotron data collection. Wewould like to thank Jean DeMouthe (California Academy of Sciences) and Mike Rumsey (Natural History Museum, London) for provision of B-containing minerals for use as reference materials. This work was funded by ERC (grant 2010-ADG-267931 to HE), NERC, Jesus College (Cambridge)and the US Department of Energy (via ALS).This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0012821X15000849
    • …
    corecore